1
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A peptide derived from sorting nexin 1 inhibits HPV16 entry, retrograde trafficking, and L2 membrane spanning. Tumour Virus Res 2024; 18:200287. [PMID: 38909779 PMCID: PMC11255958 DOI: 10.1016/j.tvr.2024.200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024] Open
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Zachary L Williamson
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A Peptide Derived from Sorting Nexin 1 Inhibits HPV16 Entry, Retrograde Trafficking, and L2 Membrane Spanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595865. [PMID: 38826391 PMCID: PMC11142256 DOI: 10.1101/2024.05.25.595865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
| | - Zachary L Williamson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| | - Matthew A Christofferson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
| | - Advait Jeevanandam
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| |
Collapse
|
3
|
Liu Y, Nan B, Niu J, Kapler GM, Gao S. An Optimized and Versatile Counter-Flow Centrifugal Elutriation Workflow to Obtain Synchronized Eukaryotic Cells. Front Cell Dev Biol 2021; 9:664418. [PMID: 33959616 PMCID: PMC8093812 DOI: 10.3389/fcell.2021.664418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Cell synchronization is a powerful tool to understand cell cycle events and its regulatory mechanisms. Counter-flow centrifugal elutriation (CCE) is a more generally desirable method to synchronize cells because it does not significantly alter cell behavior and/or cell cycle progression, however, adjusting specific parameters in a cell type/equipment-dependent manner can be challenging. In this paper, we used the unicellular eukaryotic model organism, Tetrahymena thermophila as a testing system for optimizing CCE workflow. Firstly, flow cytometry conditions were identified that reduced nuclei adhesion and improved the assessment of cell cycle stage. We then systematically examined how to achieve the optimal conditions for three critical factors affecting the outcome of CCE, including loading flow rate, collection flow rate and collection volume. Using our optimized workflow, we obtained a large population of highly synchronous G1-phase Tetrahymena as measured by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into nascent DNA strands, bulk DNA content changes by flow cytometry, and cell cycle progression by light microscopy. This detailed protocol can be easily adapted to synchronize other eukaryotic cells.
Collapse
Affiliation(s)
- Yongqiang Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bei Nan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhua Niu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Nowakowski P, Markiewicz-Żukowska R, Gromkowska-Kępka K, Naliwajko SK, Moskwa J, Bielecka J, Grabia M, Borawska M, Socha K. Mushrooms as potential therapeutic agents in the treatment of cancer: Evaluation of anti-glioma effects of Coprinus comatus, Cantharellus cibarius, Lycoperdon perlatum and Lactarius deliciosus extracts. Biomed Pharmacother 2020; 133:111090. [PMID: 33378984 DOI: 10.1016/j.biopha.2020.111090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 02/04/2023] Open
Abstract
Cancer incidence rates are on the increase worldwide. The most common brain cancer in adults is glioblastoma. Currently available treatment modalities are limited and natural products such as mushrooms could enhance them. Apart from nutritional value, mushrooms are an excellent source of bioactive compounds and therefore could be used to treat various disorders. The aim of the study was to assess the anti-glioma potential of selected mushrooms on U87MG, LN-18 glioblastoma and SVGp12 normal human astroglial cell lines. The materials were Cantharellus cibarius, Coprinus comatus, Lycoperdon perlatum and Lactarius delicious. Aqueous, 70 % ethanol or 95 % ethanol extracts from mushrooms were used for analysis including assessment of antioxidant activity by DPPH assay, cell viability by MTT assay, DNA biosynthesis by thymidine incorporation assay, activity of metalloproteinase by gelatin zymography and cell cycle assay by flow cytometry. Mushroom extracts influenced the viability and DNA biosynthesis of cancer cells. Activity of ethanol mushroom extracts was stronger than that of aqueous extracts. Anti-glioma mechanism consisted in inhibition of cancer cell proliferation and induction of apoptosis associated with arrest of cells in subG1 or G2/M phase of cell cycle, and inhibition of metalloproteinases activity. Among investigated mushrooms, L. deliciosus and C. comatus showed the greatest anti-glioma potential.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1).
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Krystyna Gromkowska-Kępka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Sylwia Katarzyna Naliwajko
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Justyna Moskwa
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Maria Borawska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| |
Collapse
|
5
|
Sato H, Singer RH, Greally JM. Quantitative Kinetic Analyses of Histone Turnover Using Imaging and Flow Cytometry. Bio Protoc 2020; 10:e3738. [PMID: 33043098 PMCID: PMC7546534 DOI: 10.21769/bioprotoc.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 11/02/2022] Open
Abstract
Dynamic histone changes occur as a central part of chromatin regulation. Deposition of histone variants and post-translational modifications of histones are strongly associated with properties of chromatin status. Characterizing the kinetics of histone variants allows important insights into transcription regulation, chromatin maintenance and other chromatin properties. Here we provide a protocol of quantitative and sensitive approaches to test the timing of incorporation and dissociation of histones using a two-color SNAP-labeling system, labelling pre-existing and newly-incorporated histones distinctly. Together with cell cycle synchronization methods and cell cycle markers, this approach enables a pulse-chase analysis to determine the turnover of histone variants during the cell cycle, detected using imaging or flow cytometry methods at single cell resolution. As well as testing global histone turnover, cell cycle-dependent cellular localization of histone variants can be also addressed using imaging approaches.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn. VA 20147, USA
| | - John M. Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Nagy G, Tanczos B, Fidrus E, Talas L, Banfalvi G. Chemically Induced Cell Cycle Arrest in Perfusion Cell Culture. Methods Mol Biol 2017; 1524:161-176. [PMID: 27815902 DOI: 10.1007/978-1-4939-6603-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to most present methods, continuous imaging of live cells would require full automation in each processing step. As an integrated system that would meet all requirements does not exist, we have established a long-term scanning-perfusion platform that: (a) replaces old medium with fresh one, (b) bypasses physical contact with the cell culture during continuous cell growth, (c) provides uninterrupted photomicrography of single cells, and (d) secures near physiological conditions and sterility up to several weeks. The system was validated by synchronizing cells using serum starvation and butyrate-induced cell cycle arrest of HaCaT cells.
Collapse
Affiliation(s)
- Gabor Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Bence Tanczos
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Eszter Fidrus
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Laszlo Talas
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary
| | - Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, Debrecen, 4010, Hungary.
| |
Collapse
|
7
|
A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine. Sci Rep 2014; 4:6394. [PMID: 25227736 PMCID: PMC5377252 DOI: 10.1038/srep06394] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022] Open
Abstract
Berberine (BBR), a traditional Chinese herbal medicine, was shown to display anticancer activity. In this study, we attempted to provide a global view of the molecular pathways associated with its anticancer effect through a gene expression-based chemical approach. BBR-induced differentially expressed genes obtained from the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were analyzed using the Connectivity Map (CMAP) database to compare similarities of gene expression profiles between BBR and CMAP compounds. Candidate compounds were further analyzed using the Search Tool for Interactions of Chemicals (STITCH) database to explore chemical-protein interactions. Results showed that BBR may inhibit protein synthesis, histone deacetylase (HDAC), or AKT/mammalian target of rapamycin (mTOR) pathways. Further analyses demonstrated that BBR inhibited global protein synthesis and basal AKT activity, and induced endoplasmic reticulum (ER) stress and autophagy, which was associated with activation of AMP-activated protein kinase (AMPK). However, BBR did not alter mTOR or HDAC activities. Interestingly, BBR induced the acetylation of α-tubulin, a substrate of HDAC6. In addition, the combination of BBR and SAHA, a pan-HDAC inhibitor, synergistically inhibited cell proliferation and induced cell cycle arrest. Our results provide novel insights into the mechanisms of action of BBR in cancer therapy.
Collapse
|
8
|
Seo E, Seo KW, Gil JE, Ha YR, Yeom E, Lee S, Lee SJ. Biophysiochemical properties of endothelial cells cultured on bio-inspired collagen films. BMC Biotechnol 2014; 14:61. [PMID: 24984812 PMCID: PMC4085646 DOI: 10.1186/1472-6750-14-61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022] Open
Abstract
Background In this study, we investigated the effect of the extracellular matrix on
endothelial dysfunction by careful observation of human umbilical vein
endothelial cells (HUVECs) cultured on denatured collagen film. Results HUVECs on denatured collagen film showed relatively high surface roughness
compared with normal HUVECs. The expression levels of MMP-1, MMP-2 and CD146
increased in the ECs on denatured collagen film. In addition, we examined
the accumulation of fluorescent beads on HUVEC layers subjected to
circulatory flow. The number of accumulated fluorescent beads increased on
the disorganized HUVEC layers. Conclusions The proposed in vitro study using bio-inspired collagen films could
potentially be used in the size- and ligand-based design of drugs to treat
endothelial dysfunction caused by circulatory vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Joon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea.
| |
Collapse
|