1
|
Silva Couto P, Stibbs DJ, Rotondi MC, Khalife R, Wolf D, Takeuchi Y, Rafiq QA. Biological differences between adult and perinatal human mesenchymal stromal cells and their impact on the manufacturing processes. Cytotherapy 2024; 26:1429-1441. [PMID: 38970611 DOI: 10.1016/j.jcyt.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
The biological properties of human mesenchymal stromal cells (hMSCs) have been explored in over a thousand clinical trials in the last decade. Although hMSCs can be isolated from multiple sources, the degree of biological similarity between cell populations from these sources remains to be determined. A comparative study was performed investigating the growth kinetics and functionality of hMSCs isolated from adipose tissue (AT), bone marrow (BM) and umbilical cord tissue (UCT) expanded in monolayer over five passages. Adult hMSCs (AT, BM) had a slower proliferation ability than the UCT-hMSCs, with no apparent differences in their glucose consumption profile. BM-hMSCs produced higher concentrations of endogenous vascular endothelial growth factor (VEGF) compared to AT- and UCT-hMSCs. This study also revealed that UCT-hMSCs were more efficiently transduced by a lentiviral vector carrying a VEGF gene than their adult counterparts. Following cellular immunophenotypic characterization, no differences across the sources were found in the expression levels of the typical markers used to identify hMSCs. This work established a systematic approach for cell source selection depending on the hMSC's intended clinical application.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, University College London, London, UK
| | - Dale J Stibbs
- Department of Biochemical Engineering, University College London, London, UK
| | - Marco C Rotondi
- Department of Biochemical Engineering, University College London, London, UK
| | - Rana Khalife
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK; Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare products Regulatory Agency, Potters Bar, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
2
|
Healy LE. Acquisition and Reception of Primary Tissues, Cells, or Other Biological Specimens. Methods Mol Biol 2018; 1590:17-27. [PMID: 28353260 DOI: 10.1007/978-1-4939-6921-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use and banking of biological material for research or clinical application is a well-established practice. The material can be of human or non-human origin. The processes involved in this type of activity, from the sourcing to receipt of materials, require adherence to a set of best practice principles that assure the ethical and legal procurement, traceability, and quality of materials.
Collapse
Affiliation(s)
- Lyn E Healy
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Beddall M, Chattopadhyay PK, Kao SF, Foulds K, Roederer M. A simple tube adapter to expedite and automate thawing of viably frozen cells. J Immunol Methods 2016; 439:74-78. [PMID: 27594593 DOI: 10.1016/j.jim.2016.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Although cryopreserved cell specimens are used throughout biomedical research, the process for thawing samples is labor-intensive and prone to error. Here we describe a small laboratory device that couples an uncapped vial of frozen cells to a conical tube containing warm cell culture media. The entire complex is loaded directly into a centrifuge; within 5min, cells are thawed and diluted out of toxic cryopreservation medium. The recovery and viability of cells are slightly reduced compared to the common (traditional) method. However, antigen-specific T-cell function is not affected. Since no technician time is required (beyond uncapping of vials), our device allows the parallel processing of as many samples as a centrifuge can hold (up to 96, in some models). Moreover, since the samples are not thawed manually in a water bath, the problems associated with technician-to-technician differences in sample handling are minimized, as is the potential for contamination. Importantly, the elimination of substantial labor involving subjective decisions standardizes this process and can reduce variability in results from cryopreserved specimens.
Collapse
Affiliation(s)
- Margaret Beddall
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Pratip K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States.
| | - Shing-Fen Kao
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Kathy Foulds
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Correia C, Koshkin A, Carido M, Espinha N, Šarić T, Lima PA, Serra M, Alves PM. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing. Stem Cells Transl Med 2016; 5:658-69. [PMID: 27025693 DOI: 10.5966/sctm.2015-0238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. SIGNIFICANCE The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs.
Collapse
Affiliation(s)
- Cláudia Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alexey Koshkin
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Madalena Carido
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nuno Espinha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pedro A Lima
- Nova Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
5
|
Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int J Mol Sci 2015; 16:24094-110. [PMID: 26473842 PMCID: PMC4632740 DOI: 10.3390/ijms161024094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle—also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.
Collapse
Affiliation(s)
- Lukas Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
- Department of Dermatology and Venereology, 1st Faculty of Medicine and General University Hospital, Charles University, U Nemocnice 2, 12808 Prague 2, Czech Republic.
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine and University Hospital Motol, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic.
| | - Ondrej Kodet
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
- Department of Dermatology and Venereology, 1st Faculty of Medicine and General University Hospital, Charles University, U Nemocnice 2, 12808 Prague 2, Czech Republic.
| | - Pavol Szabo
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| | - Martin Chovanec
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine and University Hospital Motol, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic.
| | - Barbora Dvorankova
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| |
Collapse
|
6
|
Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2014; 169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit.
Collapse
Affiliation(s)
- T Jadczyk
- Third Division of Cardiology, Medical University of Silesia, Katovice, Poland
| | | | | |
Collapse
|
7
|
|