1
|
Caliskan A, Crouch SAW, Giddins S, Dandekar T, Dangwal S. Progeria and Aging-Omics Based Comparative Analysis. Biomedicines 2022; 10:2440. [PMID: 36289702 PMCID: PMC9599154 DOI: 10.3390/biomedicines10102440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 10/21/2023] Open
Abstract
Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.
Collapse
Affiliation(s)
- Aylin Caliskan
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Samantha A. W. Crouch
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sara Giddins
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Seema Dangwal
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Laks DR, Oses-Prieto JA, Alvarado AG, Nakashima J, Chand S, Azzam DB, Gholkar AA, Sperry J, Ludwig K, Condro MC, Nazarian S, Cardenas A, Shih MYS, Damoiseaux R, France B, Orozco N, Visnyei K, Crisman TJ, Gao F, Torres JZ, Coppola G, Burlingame AL, Kornblum HI. A molecular cascade modulates MAP1B and confers resistance to mTOR inhibition in human glioblastoma. Neuro Oncol 2019; 20:764-775. [PMID: 29136244 DOI: 10.1093/neuonc/nox215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to mTOR inhibitors limits their efficacy. Methods To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on patient-derived GBM cultures. Results An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase (GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated protein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads to phosphorylation of MAP1B, and confers sensitization. Conclusions These data portray a compensatory molecular signaling network that imparts resistance to chronic mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.
Collapse
Affiliation(s)
- Dan R Laks
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Alvaro G Alvarado
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Jonathan Nakashima
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California
| | - Daniel B Azzam
- Department of Neuroscience, UCLA, Los Angeles, California
| | | | | | - Kirsten Ludwig
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Michael C Condro
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Serli Nazarian
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Anjelica Cardenas
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Michelle Y S Shih
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Bryan France
- Department of Molecular and Medical Pharmacology, UCLA
| | - Nicholas Orozco
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Koppany Visnyei
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Thomas J Crisman
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California
| | | | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California.,Department of Neurology, UCLA, Los Angeles, California
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California
| | - Harley I Kornblum
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA.,Chemistry, UCLA, Los Angeles, California
| |
Collapse
|
3
|
Abstract
Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS) to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.IMPORTANCE Type III secretion systems (T3SS) are an essential virulence trait of many bacterial pathogens because of their indispensable role in the delivery of virulence factors. However, expression of T3SS in the noninfection stage is energy consuming. Here, we established a model to explain the differential regulation of T3SS in host and nonhost environments. When Xanthomonas cells are grown in rich medium, the T3SS regulator HrpG is targeted by Lon protease for proteolysis. The degradation of HrpG leads to downregulated expression of HrpX and the hrp/hrc genes. When Xanthomonas cells infect the host, specific plant stimuli can be perceived and induce Lon phosphorylation at serine 654. Phosphorylation on Lon attenuates its proteolytic activity and protects HrpG from degradation. Consequently, enhanced stability of HrpG activates HrpX and turns on bacterial T3SS in the host. Our work provides a novel molecular mechanism underlying host-dependent activation of bacterial T3SS.
Collapse
|
4
|
Solari FA, Kollipara L, Sickmann A, Zahedi RP. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ. Methods Mol Biol 2016; 1394:25-41. [PMID: 26700039 DOI: 10.1007/978-1-4939-3341-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Altered and abnormal levels of proteins and their phosphorylation states are associated with many disorders. Detection and quantification of such perturbations may provide a better understanding of pathological conditions and help finding candidates for treatment or biomarkers. Over the years, isobaric mass tags for relative quantification of proteins and protein phosphorylation by mass spectrometry have become increasingly popular. One of the most commonly used isobaric chemical tags is iTRAQ (isobaric tag for relative and absolute quantitation). In a typical iTRAQ-8plex experiment, a multiplexed sample amounts for up to 800 μg of peptides. Using state-of-the-art LC-MS approaches, only a fraction (~5 %) of such a sample is required to generate comprehensive quantitative data on the global proteome level, so that the bulk of the sample can be simultaneously used for quantitative phosphoproteomics. Here, we provide a simple and straightforward protocol to perform quantitative analyses of both proteome and phosphoproteome from the same sample using iTRAQ.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
5
|
Sui W, Cui Z, Zhang R, Xue W, Ou M, Zou G, Chen J, Dai Y. Comparative proteomic analysis of renal tissue in IgA nephropathy with iTRAQ quantitative proteomics. Biomed Rep 2014; 2:793-798. [PMID: 25279147 DOI: 10.3892/br.2014.318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/20/2014] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin (Ig) A nephropathy (IgAN) is the most common form of glomerulonephritis. In clinical practice, it is difficult to monitor the repeating relapse in patients suffering from IgAN, which usually occurs within 10 years of end-stage renal disease. In order to identify and quantify the total protein content in the renal tissue of patients with IgAN, isobaric tags for relative and absolute quantification (iTRAQ) technology was performed. iTRAQ coupled with multiple chromatographic fractionation and tandem mass spectrometry was used to analyze the total protein of normal renal tissue in IgAN and healthy patients. The individual proteins were identified by the Mascot search engine and any that were differentially expressed were monitored. A total of 574 different proteins were identified, and 287 proteins were up- or downregulated by >1 fold alteration in levels. The results showed that iTRAQ-based quantitative proteomic technology for the identification and relative quantitation of the renal tissue proteome is efficiently applicable. The differential expression of the proteome profiles for IgAN patients was determined. Further studies using large cohorts of patient samples with long-term clinical follow-up data should be conducted to evaluate the usefulness of the pathogenesis and novel biomarker candidates of IgAN, which may develop a novel technique for the diagnosis of IgAN.
Collapse
Affiliation(s)
- Weiguo Sui
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Zhenzhen Cui
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China ; The Life Science College, Guangxi Normal University, Guilin, Guangxi 541004, P.R. China
| | - Ruohan Zhang
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Guimian Zou
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
6
|
Caruthers NJ, Stemmer PM, Shin N, Dombkowski A, Caruso JA, Gill R, Rosenspire A. Mercury alters B-cell protein phosphorylation profiles. J Proteome Res 2014; 13:496-505. [PMID: 24224561 PMCID: PMC4167842 DOI: 10.1021/pr400657k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental exposure to mercury is suggested to contribute to human immune dysfunction. To shed light on the mechanism, we identified changes in the phosphoproteomic profile of the WEHI-231 B cell line after intoxication with Hg(2+). These changes were compared to changes in the phosphoproteome that were induced by pervanadate or okadaic acid exposure. Both 250 μM HgCl2 and pervanadate, a known phosphotyrosine phosphatase inhibitor, caused an increase in the number of proteins identified after TiO2 affinity selection and LC-MS/MS analysis. Pervanadate treatment had a larger effect than Hg(2+) on the number of Scansite motifs that were tyrosine-phosphorylated, 17, and Ingenuity canonical signaling pathways activated, 4, with score >5.0. However, Hg(2+) had a more focused effect, primarily causing tyrosine-phosphorylation in src homology 2 domains in proteins that are in the B cell receptor signaling pathway. The finding that many of the changes induced by Hg(2+) overlap with those of pervanadate, indicates that at high concentrations Hg(2+) inhibits protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Nicholas J Caruthers
- Institute of Environmental Health Sciences, ‡Department of Pediatrics, and §Department of Immunology and Microbiology, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Martínez-Esteso MJ, Casado-Vela J, Sellés-Marchart S, Pedreño MA, Bru-Martínez R. Differential plant proteome analysis by isobaric tags for relative and absolute quantitation (iTRAQ). Methods Mol Biol 2014; 1072:155-69. [PMID: 24136521 DOI: 10.1007/978-1-62703-631-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein relative quantitation is one of the main targets in many proteomic experiments. Among the range of techniques available for both top-down and bottom-up approaches, isobaric tags for relative and absolute quantitation (iTRAQ) have gained positions within the top-rank techniques used for this purpose in the recent years. Briefly, each iTRAQ reagent consists of three different components: a reporter group (with a variable mass in the range of 114-117 amu), a balance group, and an amino-reactive group. The isobaric nature of iTRAQ-labeled peptides adds a signal to every peptide in the sample which is detectable in both MS and MS/MS spectra, thus enhancing the sensitivity of detection. During MS/MS, the reporter groups are released as singly charged ions with m/z ratios ranking from 114 to 117 amu, visible in the low mass region of MS/MS spectra. The iTRAQ technology can be used to analyze up to four different samples using the 4-plex kit (reporter groups 114-115 amu) or can be scaled up to eight different samples using the 8-plex kit (reporter groups 113-121 amu). In this chapter, we focus on the experimental procedures typically using 4-plex labeling, including tips leading to successful application of iTRAQ technology for the analysis of plant protein mixtures.
Collapse
Affiliation(s)
- María J Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | | | | | | | | |
Collapse
|
8
|
Weaver EM, Hummon AB. Imaging mass spectrometry: from tissue sections to cell cultures. Adv Drug Deliv Rev 2013; 65:1039-55. [PMID: 23571020 DOI: 10.1016/j.addr.2013.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Imaging mass spectrometry (IMS) has been a useful tool for investigating protein, peptide, drug and metabolite distributions in human and animal tissue samples for almost 15years. The major advantages of this method include a broad mass range, the ability to detect multiple analytes in a single experiment without the use of labels and the preservation of biologically relevant spatial information. Currently the majority of IMS experiments are based on imaging animal tissue sections or small tumor biopsies. An alternative method currently being developed is the application of IMS to three-dimensional cell and tissue culture systems. With new advances in tissue culture and engineering, these model systems are able to provide increasingly accurate, high-throughput and cost-effective models that recapitulate important characteristics of cell and tissue growth in vivo. This review will describe the most recent advances in IMS technology and the bright future of applying IMS to the field of three-dimensional cell and tissue culture.
Collapse
|
9
|
|
10
|
Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol 2012; 23:843-53. [DOI: 10.1016/j.semcdb.2012.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022]
|
11
|
Regulation of adherens junction dynamics by phosphorylation switches. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:125295. [PMID: 22848810 PMCID: PMC3403498 DOI: 10.1155/2012/125295] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning "on" or "off" their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.
Collapse
|
12
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
13
|
Xiao Y, Chen J. Proteomics approaches in the identification of molecular signatures of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:153-76. [PMID: 22790357 DOI: 10.1007/10_2012_143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor-stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Health and Biomedical Innovation Queensland University of Technology, 60 Musk Avenue, Kelvin Grove Brisbane, QLD, 4059, Australia,
| | | |
Collapse
|