1
|
Shimekake Y, Furuichi T, Abe K, Kera Y, Takahashi S. A novel thermostable D-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA. Sci Rep 2019; 9:11948. [PMID: 31420577 PMCID: PMC6697736 DOI: 10.1038/s41598-019-48480-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
d-Amino acid oxidase (DAAO) is a valuable flavoenzyme capable of being used in various practical applications, such as in determining d-amino acids and producing a material for semisynthetic cephalosporins, requiring higher thermal stability, higher catalytic activity, and broad substrate specificity. In this study, we isolated the thermophilic fungus Rasamsonia emersonii strain YA, which can grow on several d-amino acids as the sole nitrogen source, from a compost and characterized DAAO (ReDAAO) of the fungus. ReDAAO expressed in Escherichia coli exhibited significant oxidase activity against various neutral and basic d-amino acids, in particular hydrophobic d-amino acids. In addition, the enzyme also significantly acted on cephalosporin C, a starting material for semisynthetic antibiotics, and d-Glu, a general substrate for d-aspartate oxidase but not for DAAO, showing its unique and practically useful substrate specificity. The apparent kcat and Km values of the enzyme toward good substrates were comparable to those of higher catalytic fungal DAAOs, and the thermal stability (T50 value of ~60 °C) was comparable to that of a thermophilic bacterial DAAO and significantly higher than that of other eukaryotic DAAOs. These results highlight the great potential of ReDAAO for use in practical applications.
Collapse
Affiliation(s)
- Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Takehiro Furuichi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
2
|
Identification of D-Amino Acids in Light Exposed mAb Formulations. Pharm Res 2018; 35:238. [PMID: 30334107 DOI: 10.1007/s11095-018-2520-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE We previously demonstrated that D-amino acids can form as a result of photo-irradiation of a monoclonal antibody (mAb) at both λ = 254 nm and λ > 295 nm (λmax = 305 nm), likely via reversible hydrogen transfer reactions of intermediary thiyl radicals. Here, we investigate the role of various excipients (sucrose, glucose, L-Arg, L-Met and L-Leu) on D-amino acid formation, and specifically the distribution of D-amino acids in mAb monomers and aggregates present after light exposure. METHODS The mAb-containing formulations were photo-irradiated at λ = 254 nm and λmax = 305 nm, followed by fractionation of aggregate and monomer fractions using size exclusion chromatography. These aggregate and monomer fractions were subjected to hydrolysis and subsequent amino acid analysis. RESULTS Both aggregate and monomer fractions collected from all formulations showed the formation of D-Glu and D-Val, whereas the formation of D-Ala was limited to the aggregate fraction collected from an L-Arg-containing formulation. Interestingly, quantitative analysis revealed higher yields of D-amino acids in the L-Arg-containing formulation. CONCLUSIONS Generally, D-amino acids accumulated to similar extents in monomers and aggregates.
Collapse
|
3
|
Zhang N, Tian M, Liu X, Yang L. Enzyme assay for d -amino acid oxidase using optically gated capillary electrophoresis-laser induced fluorescence detection. J Chromatogr A 2018; 1548:83-91. [DOI: 10.1016/j.chroma.2018.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
4
|
Rosini E, Caldinelli L, Piubelli L. Assays of D-Amino Acid Oxidase Activity. Front Mol Biosci 2018; 4:102. [PMID: 29404340 PMCID: PMC5785730 DOI: 10.3389/fmolb.2017.00102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
D-amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs). Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| |
Collapse
|
5
|
Kondori NR, Paul P, Robbins JP, Liu K, Hildyard JCW, Wells DJ, de Belleroche JS. Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons. PLoS One 2017; 12:e0188912. [PMID: 29194436 PMCID: PMC5711026 DOI: 10.1371/journal.pone.0188912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199Win vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS.
Collapse
Affiliation(s)
- Nazanin Rahmani Kondori
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Praveen Paul
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Jacqueline P. Robbins
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Ke Liu
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - John C. W. Hildyard
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Dominic J. Wells
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Jacqueline S. de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution. Sci Rep 2017; 7:2994. [PMID: 28592826 PMCID: PMC5462808 DOI: 10.1038/s41598-017-03177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
D-amino acid oxidases (DAAO) are stereospecific enzymes which are generally almost inactive towards L-enantiomer in neutral solution when L-, D-amino acids are supplied as substrates. In this paper, the D-amino acid oxidase can catalytic oxidize L-amino acids by modulating pH of aqueous solution. With L-Pro as substrate, the catalytic rate (kcat) and the affinity (Km) of DAAO were 6.71 s−1 and 33 mM at pH 8.0, respectively, suggesting that optimal pH condition enhanced the activity of DAAO towards L-Pro. Similar results were obtained when L-Ala (pH 9.8), L-Arg (pH 6.5), L-Phe (pH 9.0), L-Thr (pH 9.4), and L-Val (pH 8.5) were catalyzed by DAAO at various pH values. The racemization of the L-amino acids was not found by capillary electrophoresis analysis during oxidation, and quantification analysis of L-amino acids before and after catalytic reaction was performed, which confirmed that the modulation of enantioselectivity of DAAO resulted from the oxidation of L-amino acids rather than D-amino acids by changing pH. A mechanistic model was proposed to explain enhanced activity of DAAO towards L-amino acids under optimal pH condition.
Collapse
|
7
|
Diez V, Loznik M, Taylor S, Winn M, Rattray NJW, Podmore H, Micklefield J, Goodacre R, Medema MH, Müller U, Bovenberg R, Janssen DB, Takano E. Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synth Biol 2015; 4:796-807. [PMID: 25713978 DOI: 10.1021/sb500368w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key problem in the engineering of pathways for the production of pharmaceutical compounds is the limited diversity of biosynthetic enzymes, which restricts the attainability of suitable traits such as less harmful byproducts, enhanced expression features, or different cofactor requirements. A promising synthetic biology approach is to redesign the biosynthetic pathway by replacing the native enzymes by heterologous proteins from unrelated pathways. In this study, we applied this method to effectively re-engineer the biosynthesis of hydroxyphenylglycine (HPG), a building block for the calcium-dependent antibiotic of Streptomyces coelicolor, a nonribosomal peptide. A key step in HPG biosynthesis is the conversion of 4-hydroxymandelate to 4-hydroxyphenylglyoxylate, catalyzed by hydroxymandelate oxidase (HmO), with concomitant generation of H2O2. The same reaction can also be catalyzed by O2-independent mandelate dehydrogenase (MdlB), which is a catabolic enzyme involved in bacterial mandelate utilization. In this work, we engineered alternative HPG biosynthetic pathways by replacing the native HmO in S. coelicolor by both heterologous oxidases and MdlB dehydrogenases from various sources and confirmed the restoration of calcium-dependent antibiotic biosynthesis by biological and UHPLC-MS analysis. The alternative enzymes were isolated and kinetically characterized, confirming their divergent substrate specificities and catalytic mechanisms. These results demonstrate that heterologous enzymes with different physiological contexts can be used in a Streptomyces host to provide an expanded library of enzymatic reactions for a synthetic biology approach. This study thus broadens the options for the engineering of antibiotic production by using enzymes with different catalytic and structural features.
Collapse
Affiliation(s)
| | | | | | | | | | - Helen Podmore
- ThermoFisher Scientific, 1 Boundary
Way, Hemel Hempstead, Herts, HP2 7GE, United Kingdom
| | | | | | | | - Ulrike Müller
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | - Roel Bovenberg
- DSM Biotechnology Center, R&D, P.O. Box 1, 2600 AM Delft, The Netherlands
| | | | | |
Collapse
|
8
|
Bailey TS, Donor MT, Naughton SP, Pluth MD. A simple bioluminescent method for measuring D-amino acid oxidase activity. Chem Commun (Camb) 2015; 51:5425-8. [PMID: 25408176 PMCID: PMC4365669 DOI: 10.1039/c4cc08145e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
D-Amino acid oxidase (DAO) plays important roles in regulating D-amino acid neurotransmitters and was recently identified as a key enzyme integral to hydrogen sulfide production from D-Cys. We report here the development of a simple biocompatible, bioluminescent method for measuring DAO activity based on the highly selective condensation of D-Cys with 6-hydroxy-2-cyanobenzothiazole (CBT-OH) to form D-luciferin.
Collapse
Affiliation(s)
- T. Spencer Bailey
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Micah T. Donor
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Sean P. Naughton
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| |
Collapse
|
9
|
Giancaspero TA, Locato V, Barile M. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:612784. [PMID: 24078860 PMCID: PMC3774037 DOI: 10.1155/2013/612784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/18/2013] [Indexed: 01/18/2023]
Abstract
Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H) and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms). A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H) destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18), which is inhibited by NAD(+) and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae.
Collapse
Affiliation(s)
| | - Vittoria Locato
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Maria Barile
- Istituto di Biomembrane e Bioenergetica, CNR, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
10
|
Becker PM, Yu P. What makes protein indigestible from tissue-related, cellular, and molecular aspects? Mol Nutr Food Res 2013; 57:1695-707. [PMID: 23765989 DOI: 10.1002/mnfr.201200592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Abstract
This paper gives an insight into key factors, which impair enzymatic protein digestion. By nature, some proteins in raw products are already poorly digestible because of structural peculiarities, or due to their occurrence in plant cytoplasmic organelles or in cell membranes. In plant-based protein, molecular and structural changes can be induced by genetic engineering, even if protein is not a target compound class of the genetic modification. Other proteins only become difficult to digest due to changes that occur during the processing of proteinaceous products, such as extruding, boiling, or acidic or alkaline treatment. The utilization of proteinaceous raw materials in industrial fermentations can also have negative impacts on protein digestibility, when reused as fermentation by-products for animal nutrition, such as brewers' grains. After consumption, protein digestion can be impeded in the intestine by the presence of antinutritional factors, which are ingested together with the food or feedstuff. It is concluded that the encircling matrix, but also molecular, chemical, and structural peculiarities or modifications to amino acids and proteins obstruct protein digestion by common proteolytic enzymes in humans and animals.
Collapse
Affiliation(s)
- Petra M Becker
- Wageningen UR Livestock Research, Lelystad, The Netherlands
| | | |
Collapse
|