1
|
Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS. Development of Novel Micro-dystrophins with Enhanced Functionality. Mol Ther 2019; 27:623-635. [PMID: 30718090 PMCID: PMC6403485 DOI: 10.1016/j.ymthe.2019.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/24/2023] Open
Abstract
Gene therapies using adeno-associated viral (AAV) vectors have advanced into clinical trials for several diseases, including Duchenne muscular dystrophy (DMD). A limitation of AAV is the carrying capacity (∼5 kb) available for genes and regulatory cassettes (RCs). These size constraints are problematic for the 2.2-Mb dystrophin gene. We previously designed a variety of miniaturized micro-dystrophins (μDys) that displayed significant, albeit incomplete, function in striated muscles. To develop μDys proteins with improved performance, we explored structural modifications of the dystrophin central rod domain. Eight μDys variants were studied that carried unique combinations of between four and six of the 24 spectrin-like repeats present in the full-length protein, as well as various hinge domains. Expression of μDys was regulated by a strong but compact muscle-restricted RC (CK8e) or by the ubiquitously active cytomegalovirus (CMV) RC. Vectors were evaluated by intramuscular injection and systemic delivery to dystrophic mdx4cv mice, followed by analysis of skeletal muscle pathophysiology. Two μDys designs were identified that led to increased force generation compared with previous μDys while also localizing neuronal nitric oxide synthase to the sarcolemma. An AAV vector expressing the smaller of these (μDys5) from the CK8e RC is currently being evaluated in a DMD clinical trial.
Collapse
Affiliation(s)
- Julian N Ramos
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Katrin Hollinger
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - James M Allen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA
| | - Stephen D Hauschka
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jeffrey S Chamberlain
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. AREAS COVERED Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. EXPERT OPINION Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response.
Collapse
Affiliation(s)
- Julian Ramos
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| | - Jeffrey S Chamberlain
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| |
Collapse
|