1
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
2
|
Brown KK, Hann MM, Lakdawala AS, Santos R, Thomas PJ, Todd K. Approaches to target tractability assessment - a practical perspective. MEDCHEMCOMM 2018; 9:606-613. [PMID: 30108951 DOI: 10.1039/c7md00633k] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
Abstract
The assessment of the suitability of novel targets to intervention by different modalities, e.g. small molecules or antibodies, is increasingly seen as important in helping to select the most progressable targets at the outset of a drug discovery project. This perspective considers differing aspects of tractability and how it can be assessed using in silico and experimental approaches. We also share some of our experiences in using these approaches.
Collapse
Affiliation(s)
- Kristin K Brown
- Computational and Modelling Sciences , Platform Technology and Sciences , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , USA
| | - Michael M Hann
- NCE Molecular Discovery , Platform Technology and Sciences , GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire , SG1 2NY , UK .
| | - Ami S Lakdawala
- In vitro/In vivo Translation Sciences , Platform Technology and Sciences , GlaxoSmithKline , 1250 S. Collegeville Road , Collegeville , Pennsylvania 19426 , USA
| | - Rita Santos
- Target Sciences Computational Biology , GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire , SG1 2NY , UK
| | - Pamela J Thomas
- Computational and Modelling Sciences , Platform Technology and Sciences , GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire , SG1 2NY , UK
| | - Kieran Todd
- Computational and Modelling Sciences , Platform Technology and Sciences , GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire , SG1 2NY , UK
| |
Collapse
|
3
|
Guo H, Peng H, Emili A. Mass spectrometry methods to study protein-metabolite interactions. Expert Opin Drug Discov 2017; 12:1271-1280. [DOI: 10.1080/17460441.2017.1378178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
6
|
Cutler P, Voshol H. Proteomics in pharmaceutical research and development. Proteomics Clin Appl 2015; 9:643-50. [PMID: 25763573 DOI: 10.1002/prca.201400181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials. Here, we review the development of proteomics in the drug discovery process, placing it in a historical context as well as reviewing the current status in light of the contributions to this special issue, which reflect some of the diverse demands of the drug and biomarker pipelines.
Collapse
Affiliation(s)
- Paul Cutler
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Analytical Sciences and Imaging, Basel, Switzerland
| |
Collapse
|
7
|
Van Riper SK, de Jong EP, Higgins L, Carlis JV, Griffin TJ. Improved intensity-based label-free quantification via proximity-based intensity normalization (PIN). J Proteome Res 2014; 13:1281-92. [PMID: 24571364 PMCID: PMC3993879 DOI: 10.1021/pr400866r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Researchers are increasingly turning to label-free MS1 intensity-based quantification strategies within HPLC-ESI-MS/MS workflows to reveal biological variation at the molecule level. Unfortunately, HPLC-ESI-MS/MS workflows using these strategies produce results with poor repeatability and reproducibility, primarily due to systematic bias and complex variability. While current global normalization strategies can mitigate systematic bias, they fail when faced with complex variability stemming from transient stochastic events during HPLC-ESI-MS/MS analysis. To address these problems, we developed a novel local normalization method, proximity-based intensity normalization (PIN), based on the analysis of compositional data. We evaluated PIN against common normalization strategies. PIN outperforms them in dramatically reducing variance and in identifying 20% more proteins with statistically significant abundance differences that other strategies missed. Our results show the PIN enables the discovery of statistically significant biological variation that otherwise is falsely reported or missed.
Collapse
Affiliation(s)
- Susan K Van Riper
- Department of Biomedical Informatics and Computational Biology, University of Minnesota Rochester , 111 South Broadway, Rochester, Minnesota 55904, United States
| | | | | | | | | |
Collapse
|