1
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
2
|
Luanpitpong S, Janan M, Yosudjai J, Poohadsuan J, Chanvorachote P, Issaragrisil S. Bcl-2 Family Members Bcl-xL and Bax Cooperatively Contribute to Bortezomib Resistance in Mantle Cell Lymphoma. Int J Mol Sci 2022; 23:ijms232214474. [PMID: 36430955 PMCID: PMC9695253 DOI: 10.3390/ijms232214474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma with poor prognosis, due to the inevitable development of drug resistance. Despite being the first-in-class proteasome inhibitor for relapsed/refractory MCL, resistance to bortezomib (BTZ) in MCL patients remains a major hurdle of effective therapy, and relapse following BTZ is frequent. Understanding the mechanisms underlying BTZ resistance is, therefore, important for improving the clinical outcome and developing novel therapeutic strategies. Here, we established de novo BTZ-resistant human MCL-derived cells with the highest resistance index of 300-fold compared to parental cells. We provided compelling evidence that both Bcl-xL and Bax are key mediators in determining BTZ sensitivity in MCL cells. Overexpression of antiapoptotic Bcl-xL and depletion of proapoptotic Bax cooperatively protected MCL cells against BTZ-induced apoptosis, causing acquired BTZ resistance, likely by tilting the balance of Bcl-2 family proteins toward antiapoptotic signaling. Bioinformatics analyses suggested that high BCL2L1 (encoded Bcl-xL) and low BAX were, in part, associated with poor prognosis of MCL patients, e.g., when combined with low OGT, which regulates cellular O-GlcNAcylation. Our findings support recent strategies in small molecule drug discovery co-targeting antiapoptotic Bcl-2 family proteins using BH3 mimetics and Bax using Bax activators to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Juthamas Yosudjai
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jirarat Poohadsuan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok 10310, Thailand
| |
Collapse
|
3
|
Wilmes S, Jeffrey PA, Martinez-Fabregas J, Hafer M, Fyfe PK, Pohler E, Gaggero S, López-García M, Lythe G, Taylor C, Guerrier T, Launay D, Mitra S, Piehler J, Molina-París C, Moraga I. Competitive binding of STATs to receptor phospho-Tyr motifs accounts for altered cytokine responses. eLife 2021; 10:66014. [PMID: 33871355 PMCID: PMC8099432 DOI: 10.7554/elife.66014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.
Collapse
Affiliation(s)
- Stephan Wilmes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Polly-Anne Jeffrey
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Jonathan Martinez-Fabregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maximillian Hafer
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Paul K Fyfe
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Elizabeth Pohler
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Silvia Gaggero
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Charles Taylor
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Thomas Guerrier
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - David Launay
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Suman Mitra
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Jacob Piehler
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom.,T-6 Theoretical Division, Los Alamos National Laboratory, Los Alamos, United States
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Goswami S, Hu X, Chen Q, Qiu J, Yang J, Poudyal D, Sherman BT, Chang W, Imamichi T. Profiles of MicroRNAs in Interleukin-27-Induced HIV-Resistant T Cells: Identification of a Novel Antiviral MicroRNA. J Acquir Immune Defic Syndr 2021; 86:378-387. [PMID: 33196551 PMCID: PMC7879852 DOI: 10.1097/qai.0000000000002565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Interleukin-27 (IL-27) is known as an anti-HIV cytokine. We have recently demonstrated that IL-27-pretreatment promotes phytohemagglutinin-stimulated CD4(+) T cells into HIV-1-resistant cells by inhibiting an uncoating step. PURPOSE To further characterize the function of the HIV resistant T cells, we investigated profiles of microRNA in the cells using microRNA sequencing (miRNA-seq) and assessed anti-HIV effect of the microRNAs. METHODS Phytohemagglutinin-stimulated CD4(+) T cells were treated with or without IL-27 for 3 days. MicroRNA profiles were analyzed using miRNA-seq. To assess anti-HIV effect, T cells or macrophages were transfected with synthesized microRNA mimics and then infected with HIVNL4.3 or HIVAD8. Anti-HIV effect was monitored by a p24 antigen enzyme-linked immunosorbent assay kit. interferon (IFN)-α, IFN-β, or IFN-λ production was quantified using each subtype-specific enzyme-linked immunosorbent assay kit. RESULTS A comparative analysis of microRNA profiles indicated that expression of known miRNAs was not significantly changed in IL-27-treated cells compared with untreated T cells; however, a total of 15 novel microRNAs (miRTC1 ∼ miRTC15) were identified. Anti-HIV assay using overexpression of each novel microRNA revealed that 10 nM miRTC14 (GenBank accession number: MF281439) remarkably suppressed HIV infection by (99.3 ± 0.27%, n = 9) in macrophages but not in T cells. The inhibition was associated through induction of >1000 pg/mL of IFN-αs and IFN-λ1. CONCLUSION We discovered a total of 15 novel microRNAs in T cells and characterized that miRTC14, one of the novel microRNAs, was a potent IFN-inducing anti-HIV miRNA, implicating that regulation of the expression of miRTC14 may be a potent therapeutic tool for not only HIV but also other virus infection.
Collapse
Affiliation(s)
- Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
- United States Department of Agriculture, Plant Germplasm Quarantine Program, Beltsville, MD; and
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Ju Qiu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Deepak Poudyal
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
- Covance Central Laboratory Services, Inc, Indianapolis, IN
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
5
|
Sowrirajan B, Saito Y, Poudyal D, Chen Q, Sui H, DeRavin SS, Imamichi H, Sato T, Kuhns DB, Noguchi N, Malech HL, Lane HC, Imamichi T. Interleukin-27 Enhances the Potential of Reactive Oxygen Species Generation from Monocyte-derived Macrophages and Dendritic cells by Induction of p47 phox. Sci Rep 2017; 7:43441. [PMID: 28240310 PMCID: PMC5327488 DOI: 10.1038/srep43441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 cytokine family, plays an important and diverse role in the function of the immune system. We have previously demonstrated that IL-27 is an anti-viral cytokine which inhibits HIV-1, HIV-2, Influenza virus and herpes simplex virus infection, and enhances the potential of reactive oxygen species (ROS) generating activity during differentiation of monocytes to macrophages. In this study, we further investigated the mechanism of the enhanced potential for ROS generation by IL-27. Real time PCR, western blot and knock down assays demonstrate that IL-27 is able to enhance the potential of superoxide production not only during differentiation but also in terminally differentiated-macrophages and immature dendritic cells (iDC) in association with the induction of p47phox, a cytosolic component of the ROS producing enzyme, NADPH oxidase, and the increase in amounts of phosphorylated p47phox upon stimulation. We also demonstrate that IL-27 is able to induce extracellular superoxide dismutase during differentiation of monocytes but not in terminal differentiated macrophages. Since ROS plays an important role in a variety of inflammation, our data demonstrate that IL-27 is a potent regulator of ROS induction and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Yoshiro Saito
- Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Deepak Poudyal
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20802, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toyotaka Sato
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Noriko Noguchi
- Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20802, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| |
Collapse
|
6
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
7
|
Barreto-de-Souza V, Ferreira PLC, Vivarini ADC, Calegari-Silva T, Soares DC, Regis EG, Pereira RMS, Silva AM, Saraiva EM, Lopes UG, Bou-Habib DC. IL-27 enhances Leishmania amazonensis infection via ds-RNA dependent kinase (PKR) and IL-10 signaling. Immunobiology 2014; 220:437-44. [PMID: 25466588 DOI: 10.1016/j.imbio.2014.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/21/2022]
Abstract
The protozoan parasite Leishmania infects and replicates in macrophages, causing a spectrum of diseases in the human host, varying from cutaneous to visceral clinical forms. It is known that cytokines modulate the immunological response against Leishmania and are relevant for infection resolution. Here, we report that Interleukin (IL)-27 increases Leishmania amazonensis replication in human and murine macrophages and that the blockage of the IL-10 receptor on the surface of infected cells abolished the IL-27-mediated enhancement of Leishmania growth. IL-27 induced the activation/phosphorylation of protein kinase R (PKR) in macrophages, and PKR blockage or PKR gene deletion abrogated the enhancement of the parasite growth driven by IL-27, as well as the L. amazonensis-induced macrophage production of IL-27. We also observed that L. amazonensis-induced expression of IL-27 depends on type I interferon signaling and the engagement of Toll-like receptor 2. Treatment of Leishmania-infected mice with IL-27 increased lesion size and parasite loads in the footpad and lymph nodes of infected animals, indicating that this cytokine exerts a local and a systemic effect on parasite growth and propagation. In conclusion, we show that IL-27 is a L. amazonensis-enhancing factor and that the PKR/IFN1 axis and IL-10 are critical mediators of this IL-27 induced effect.
Collapse
Affiliation(s)
| | - Pedro L C Ferreira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Calegari-Silva
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid Costa Soares
- Laboratory of Immunobiology of Leishmaniasis, Paulo de Goes Institute of Microbiology, Department of Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo G Regis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Renata M S Pereira
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elvira M Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Paulo de Goes Institute of Microbiology, Department of Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses G Lopes
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology, Translational Research in Health and Environment in the Amazon Region (INCT-IMPeTAM), Brazil.
| | | |
Collapse
|
8
|
Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, Takano Y, Eguchi H, Sudo T, Sugimachi K, Yamamoto H, Doki Y, Mori M, Mimori K. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer 2013; 110:164-71. [PMID: 24196785 PMCID: PMC3887297 DOI: 10.1038/bjc.2013.698] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022] Open
Abstract
Background: We previously conducted gene expression microarray analyses to identify novel indicators for colorectal cancer (CRC) metastasis and prognosis from which we identified PVT-1 as a candidate gene. PVT-1, which encodes a long noncoding RNA, mapped to chromosome 8q24 whose copy-number amplification is one of the most frequent events in a wide variety of malignant diseases. However, PVT-1 molecular mechanism of action remains unclear. Methods: We conducted cell proliferation and invasion assays using colorectal cancer cell lines transfected with PVT-1siRNA or negative control siRNA. Gene expression microarray analyses on these cell lines were also carried out to investigate the molecular function of PVT-1. Further, we investigated the impact of PVT-1 expression on the prognosis of 164 colorectal cancer patients by qRT–PCR. Results: CRC cells transfected with PVT-1 siRNA exhibited significant loss of their proliferation and invasion capabilities. In these cells, the TGF-β signalling pathway and apoptotic signals were significantly activated. In addition, univariate and multivariate analysis revealed that PVT-1 expression level was an independent risk factor for overall survival of colorectal cancer patients. Conclusion: PVT-1, which maps to 8q24, generates antiapoptotic activity in CRC, and abnormal expression of PVT-1 was a prognostic indicator for CRC patients.
Collapse
Affiliation(s)
- Y Takahashi
- 1] Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan [2] Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - G Sawada
- 1] Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan [2] Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - J Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - R Uchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - T Matsumura
- 1] Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan [2] Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - H Ueo
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - Y Takano
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - H Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - T Sudo
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - K Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| | - H Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Y Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - M Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - K Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara 4546, Beppu 874-0838, Japan
| |
Collapse
|
9
|
Berard A, Kroeker AL, Coombs KM. Transcriptomics and quantitative proteomics in virology. Future Virol 2012. [DOI: 10.2217/fvl.12.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|