1
|
Wang X, Lan Q, Lin Y, Yuan X, Mei S, Lei F, Dong B, Zhao M, Cai M, Shen C, Zhu B. RETRACTED: Investigating the effectiveness of forensic genetics and population genetic diversity using a multi-InDel system in Chinese Hezhou and Southern Shaanxi Han populations. Ann Hum Genet 2025; 89:e1-e13. [PMID: 38766954 DOI: 10.1111/ahg.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Multiple insertion-deletion (multi-InDel) has greater potential in forensic genetics than InDel, and its efficacy in kinship testing, individual identification, DNA mixture detection and ancestry inference remains to be explored. METHODS Consequently, we designed an efficient and robust system consisting of 41 multi-InDels to evaluate its efficacy in forensic applications in Chinese Hezhou Han (HZH) and Southern Shaanxi Han (SNH) populations and explore the genetic relationships between the SNH, HZH, and 26 reference populations. RESULTS AND CONCLUSION The obtained results showed that 38 out of the 41 multi-InDels had fairly high genetic variations. The the cumulative probability of discrimination and exclusion values of the multi-InDels (except MI38) in HZH and SNH populations both exceeded 1-e-25 and 1-e-6, correspondingly. The genetic compositions of HZH and SNH individuals were similar to that of East Asians and the Naive Bayes model could well distinguish East Asians, Africans and Americans. These results indicated that the multi-InDel systerm can serve as an effective tool to provide important evidence for the development of multi-InDels in forensic practice and better analyse the genetic background of the Han Chinese populations.
Collapse
Affiliation(s)
- Xi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yifeng Lin
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xi Yuan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shuyan Mei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bonan Dong
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chunmei Shen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu J, Du W, Jiang L, Liu C, Chen L, Zheng Y, Hou Y, Liu C, Wang Z. Development and validation of a forensic multiplex InDel assay: The AGCU InDel 60 kit. Electrophoresis 2022; 43:1871-1881. [PMID: 35859229 DOI: 10.1002/elps.202100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
Marker sets based on insertion/deletion polymorphisms (InDels) combine the characteristics of both short tandem repeats (STRs) and single nucleotide polymorphisms and have served as effective complementary or stand-alone systems for human identification in forensics. We developed a novel multiplex amplification detection system, designated the AGCU InDel 60 kit, containing 57 autosomal InDels, 2 Y-chromosomal InDels, and the amelogenin locus and validated the kit in a series of studies, which included tests of the PCR conditions; tests for sensitivity, species specificity, reproducibility, stability, and mock case samples; degradation studies; and a population study. The results indicated that the AGCU InDel 60 kit was accurate, specific, reproducible, stable, and robust. Complete DNA profiles were obtained even with 125 pg of human DNA. In tests of artificially degraded samples, we found that the number of alleles detected by the validated kit was considerably greater than that detected by the STR-based AGCU 21+1 kit, even as the degree of degradation increased. Additionally, 564 unrelated individuals from three Han groups were investigated using this novel system, and the values of combined power of discrimination and combined power of exclusion were not less than 1-4.9026 × 10-24 and 1-3.1123 × 10-5 , respectively. Thus, the results indicated that the novel kit was more powerful than the previous version of the InDel kit (the AGCU InDel 50 kit). Our results suggest that the AGCU InDel 60 kit can serve as an efficient tool for human forensics and a supplementary kit for population genetics research.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Weian Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Changhui Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Ling Chen
- AGCU ScienTech Incorporation, Wuxi, P. R. China
| | - Yangyang Zheng
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Chao Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
3
|
Olsen SDH, Kolte AM, Bang N, Krog MC, Steffensen R, Nielsen HS, Jakobsen MA. The development of an indel panel for microchimerism detection. Exp Mol Pathol 2022; 127:104804. [PMID: 35718190 DOI: 10.1016/j.yexmp.2022.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The aim of the study was to create a simple assay for microchimerism detection independent of sex and without HLA genotyping. METHODS The method is based on detection of insertion or deletions utilizing a multiplex PCR followed by fragment analysis by capillary electrophoresis, and probe-based qPCR assays. A total of 192 samples, taken either before pregnancy, during 1st trimester, or either during 2nd trimester or at miscarriage, obtained from a cohort of 97 female patients with either primary or secondary recurrent pregnancy loss, were screened for fetal microchimerism by the indel panel as well as an existing assay based on detection of the Y-chromosome marker; DYS14. RESULTS The overall prevalence of DYS14 positive samples was 29% (55/192) whereas 32% (61/192) tested positive by the indel method. There was an overall agreement of 64% (122/192) between the results obtained by the two methods. A Fisher's Exact test showed no statistic significant difference in the prevalence of microchimerism detected by the two methods at any of the three times of sampling. The distribution of the number of positive wells detected by both methods were compared by a Mann-Whitney U test, which showed no statistically significant difference at any of the three times of sampling. CONCLUSION The data indicates that microchimerism can be detected efficiently by the indel method. This makes it possible to detect both female and male cells without the need of HLA-genotyping. Furthermore, the indel method has potential to be implemented as a routine analysis. This will remove the sex bias in future explorations of the role microchimerism plays in health and disease.
Collapse
Affiliation(s)
- Sofie D H Olsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
| | - Astrid M Kolte
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Nina Bang
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Maria Christine Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Henriette S Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Yang Q, Yu H, Qu Y, Zhang X, Xia R, Wang Z, Tan R, Xiong L, Xi S, Wu J, Gao Y, Zhang S, Li C. Developmental validation of the novel six-dye Goldeneye TM DNA ID System 35InDel kit for forensic application. Forensic Sci Res 2021; 7:673-684. [PMID: 36817233 PMCID: PMC9930762 DOI: 10.1080/20961790.2021.1945723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Insertion/deletion polymorphisms (InDels) have been treated as a prospective and helpful genetic marker in the fields of forensic human identification, anthropology and population genetics for the past few years. In this study, we developed a six-dye multiplex typing system consisting of 34 autosomal InDels and Amelogenin for forensic application. The contained InDels were specifically selected for Chinese population with the MAF ≥ 0.25 in East Asia, which do not overlap with the markers of Investigator® DIPplex kit. The typing system was named as GoldeneyeTM DNA ID System 35InDel Kit, and a series of developmental validation studies including repeatability/reproducibility, concordance, accuracy, sensitivity, stability, species specificity and population genetics were conducted on this kit. We confirmed that the 35InDel kit is precise, sensitive, species specific and robust for forensic practice. Moreover, the 35InDel kit is capable of typing DNA extracted from forensic routine case-type samples as well as degraded samples and mixture samples. All markers are proved to be highly polymorphic with an average observed heterozygosity (He) of 0.4582. The combined power of discrimination (CPD) is 0.999 999 999 999 978 and the combined power of exclusion in duos (CPED) and trios (CPET) are 0.978 837 and 0.999573, respectively, which are higher than those of the Investigator® DIPplex kit. Thus, the GoldeneyeTM DNA ID System 35InDel kit is suitable for forensic human identification and could serve as a supplementary typing system for paternity testing. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1945723 .
Collapse
Affiliation(s)
- Qi Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Huan Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Yiling Qu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Xiaochun Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Ziwei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Rui Tan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Lei Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shihan Xi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Clinical Medical School, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Jun Wu
- PEOPLESPOTINC, Beijing, China
| | - Yuzhen Gao
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,CONTACT Suhua Zhang ; Chengtao Li
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Jin R, Cui W, Fang Y, Jin X, Wang H, Lan Q, Guo Y, Chen C, Zhang X, Zhu B. A Novel Panel of 43 Insertion/Deletion Loci for Human Identifications of Forensic Degraded DNA Samples: Development and Validation. Front Genet 2021; 12:610540. [PMID: 33777093 PMCID: PMC7990895 DOI: 10.3389/fgene.2021.610540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Insertion/deletion polymorphism is a promising genetic marker in the forensic genetic fields, especially in the forensic application of degraded sample at crime scene. In this research, a novel five-dye multiplex amplification panel containing 43 highly polymorphic Insertion/deletion (InDel) loci and one Amelogenin gene locus is designed and constructed in-house for the individual identification in East Asian populations. The amplicon sizes of 43 InDel loci are less than 200 bp, which help to ensure that full allele profiles can be obtained from degraded DNA sample. A series of optimizations and developmental validations including optimization of PCR conditions, detection efficiency of the degraded and casework samples, sensitivity, reproducibility, precision, tolerance for inhibitors, species specificity and DNA mixtures are performed according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) guideline. The results of the internal validation demonstrated that this novel InDel panel was a reliable, sensitive and accurate system with good tolerances to different inhibitors, and performed the considerable detection efficiency for the degraded or mixed samples, which could be used in the forensic applications.
Collapse
Affiliation(s)
- Rui Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongdan Wang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Lan
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Comparison of the Allelic Alterations between InDel and STR Markers in Tumoral Tissues Used for Forensic Purposes. ACTA ACUST UNITED AC 2021; 57:medicina57030226. [PMID: 33801242 PMCID: PMC8002019 DOI: 10.3390/medicina57030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
Background and objectives: Over the last two decades, human DNA identification and kinship tests have been conducted mainly through the analysis of short tandem repeats (STRs). However, other types of markers, such as insertion/deletion polymorphisms (InDels), may be required when DNA is highly degraded. In forensic genetics, tumor samples may sometimes be used in some cases of human DNA identification and in paternity tests. Nevertheless, tumor genomic instability related to forensic DNA markers should be considered in forensic analyses since it can compromise genotype attribution. Therefore, it is useful to know what impact tumor transformation may have on the forensic interpretation of the results obtained from the analysis of these polymorphisms. Materials and Methods: The aim of this study was to investigate the genomic instability of InDels and STRs through the analysis of 55 markers in healthy tissue and tumor samples (hepatic, gastric, breast, and colorectal cancer) in 66 patients. The evaluation of genomic instability was performed comparing InDel and STR genotypes of tumor samples with those of their healthy counterparts. Results: With regard to STRs, colorectal cancer was found to be the tumor type affected by the highest number of mutations, whereas in the case of InDels the amount of genetic mutations turned out to be independent of the tumor type. However, the phenomena of genomic instability, such as loss of heterozygosity (LOH) and microsatellite instability (MSI), seem to affect InDels more than STRs hampering genotype attribution. Conclusion: We suggest that the use of STRs rather than InDels could be more suitable in forensic genotyping analyses given that InDels seem to be more affected than STRs by mutation events capable of compromising genotype attribution.
Collapse
|
7
|
Sanz-Piña E, Santurtún A, Freire J, Gómez-Román J, Colorado M, Zarrabeitia MT. The genetic profile of bone marrow transplant patients in different samples of forensic interest. Forensic Sci Med Pathol 2018; 15:178-183. [DOI: 10.1007/s12024-018-0057-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
8
|
Massively parallel sequencing of 68 insertion/deletion markers identifies novel microhaplotypes for utility in human identity testing. Forensic Sci Int Genet 2016; 25:198-209. [PMID: 27685342 DOI: 10.1016/j.fsigen.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022]
Abstract
Short tandem repeat (STR) loci are the traditional markers used for kinship, missing persons, and direct comparison human identity testing. These markers hold considerable value due to their highly polymorphic nature, amplicon size, and ability to be multiplexed. However, many STRs are still too large for use in analysis of highly degraded DNA. Small bi-allelic polymorphisms, such as insertions/deletions (INDELs), may be better suited for analyzing compromised samples, and their allele size differences are amenable to analysis by capillary electrophoresis. The INDEL marker allelic states range in size from 2 to 6 base pairs, enabling small amplicon size. In addition, heterozygote balance may be increased by minimizing preferential amplification of the smaller allele, as is more common with STR markers. Multiplexing a large number of INDELs allows for generating panels with high discrimination power. The Nextera™ Rapid Capture Custom Enrichment Kit (Illumina, Inc., San Diego, CA) and massively parallel sequencing (MPS) on the Illumina MiSeq were used to sequence 68 well-characterized INDELs in four major US population groups. In addition, the STR Allele Identification Tool: Razor (STRait Razor) was used in a novel way to analyze INDEL sequences and detect adjacent single nucleotide polymorphisms (SNPs) and other polymorphisms. This application enabled the discovery of unique allelic variants, which increased the discrimination power and decreased the single-locus random match probabilities (RMPs) of 22 of these well-characterized INDELs which can be considered as microhaplotypes. These findings suggest that additional microhaplotypes containing human identification (HID) INDELs may exist elsewhere in the genome.
Collapse
|
9
|
Saiz M, Alvarez-Cubero MJ, Martinez-Gonzalez LJ, Alvarez JC, Lorente JA. Population genetic data of 38 insertion–deletion markers in South East Spanish population. Forensic Sci Int Genet 2014; 13:236-8. [DOI: 10.1016/j.fsigen.2014.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023]
|
10
|
Analysis of post-transplant chimerism by using a single amplification reaction of 38 Indel polymorphic loci. Bone Marrow Transplant 2014; 49:1432-5. [PMID: 25111510 DOI: 10.1038/bmt.2014.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 11/08/2022]
Abstract
In order to detect chimerism after allogeneic hematopoietic SCT (HSCT), several methods have been developed. In this study we describe the use of a set of insertion/deletion (Indel) polymorphic loci to determine the level of donor cell engraftment. We analyzed 50 DNA samples from patients who had undergone HSCT, and also several artificial chimeric samples created by mixing different DNA specimens from non-transplanted donors in various proportions. A specific set of 38 autosomic Indel polymorphisms were analyzed. For comparison purposes, a set of 15 short tandem repeats (STRs) were analyzed using the Identifiler Plus Amplification Kit. Our results suggest that Indel-based and STR-based procedures behave similarly in most cases. However, Indel analysis may provide additional information in some cases with a small minor chimeric component or when the presence of stutter bands complicates chimerism estimation.
Collapse
|
11
|
Allelic frequencies and statistical data from 30 INDEL loci in Uruguayan population. Forensic Sci Int Genet 2014; 9:e27-9. [DOI: 10.1016/j.fsigen.2013.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022]
|