1
|
Biju T, Venkatesh C, Honnasiddappa DB, Sajjan M, Mahadeva NK, Dinesh BGH, Kumar BS, Ganjipete S, Ramar M, Kunjiappan S, Theivendren P, Madasamy S, Chidambaram K, Ammunje DN, Pavadai P. ATAD2 bromodomain in cancer therapy: current status and future perspectives. Int J Biol Macromol 2025; 311:143948. [PMID: 40334884 DOI: 10.1016/j.ijbiomac.2025.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
ATPase family AAA domain-containing protein 2, or ATAD2, is a novel carcinogen, essential for cancer development, chromatin remodeling, and transcriptional control. It contains a bromodomain, which binds to acetylated histones to control gene expression. It also impacts pathways that regulate the cell cycle, DNA replication, and hormone signalling. ATAD2 is overexpressed in several malignancies, including colorectal, lung, ovarian, and breast cancers, and cancer metastasis. Investigations into the function of ATAD2 in oncogenesis and its interactions may offer fresh approaches to creating cancer treatment plans. Although preclinical research is very encouraging, many unresolved aspects regarding therapeutic development remain, including toxicity being explored concurrently. Investigations into the function of ATAD2 in oncogenesis may offer fresh approaches to developing chemotherapy strategies. Most of ATAD2's molecular mechanisms behind carcinogenesis and functions are discussed here. Additionally, we included progress, including potential monoclonal antibodies, RNA-based therapies, and small chemical inhibitors, in the review. Therefore, we guarantee this study will provide researchers with new opportunities and directions for cancer therapeutics.
Collapse
Affiliation(s)
- Tincy Biju
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Chidananda Venkatesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Darshana Ballagere Honnasiddappa
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mallikarjun Sajjan
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Nayan Kumar Mahadeva
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Basavana Gowda Hosur Dinesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Bandral Sunil Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Srinivas Ganjipete
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, Storrs CT-06269, USA
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Sundar Madasamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| |
Collapse
|
2
|
Mass Spectrometry to Study Chromatin Compaction. BIOLOGY 2020; 9:biology9060140. [PMID: 32604817 PMCID: PMC7345930 DOI: 10.3390/biology9060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they “flag” chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.
Collapse
|
3
|
Shi M, Kawabe Y, Ito A, Kamihira M. Targeted knock-in into the OVA locus of chicken cells using CRISPR/Cas9 system with homology-independent targeted integration. J Biosci Bioeng 2020; 129:363-370. [PMID: 31594694 DOI: 10.1016/j.jbiosc.2019.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
It is anticipated that transgenic avian species will be used as living bioreactors for the production of biopharmaceutical proteins. Precise tissue-specific expression of exogenous genes is a major challenge for the development of avian bioreactors. No robust vector is currently available for highly efficient and specific expression. In recent years, genome-editing techniques such as the CRISPR/Cas9 system have emerged as efficient and user-friendly genetic modification tools. Here, to apply the CRISPR/Cas9 system for the development of transgenic chickens, guide RNA sequences (gRNAs) of the CRISPR/Cas9 system for the ovalbumin (OVA) locus were evaluated for the oviduct-specific expression of exogenous genes. An EGFP gene expression cassette was introduced into the OVA locus of chicken DF-1 and embryonic fibroblasts using the CRISPR/Cas9 system mediated by homology-independent targeted integration. For the knock-in cells, EGFP expression was successfully induced by activation of the endogenous OVA promoter using the dCas9-VPR transactivation system. The combination of gRNAs designed around the OVA TATA box was important to induce endogenous OVA gene expression with high efficiency. These methods provide a useful tool for studies on the creation of transgenic chicken bioreactors and the activation of tissue-specific promoters.
Collapse
Affiliation(s)
- Ming Shi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Kinyamu HK, Bennett BD, Bushel PR, Archer TK. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem 2019; 295:1271-1287. [PMID: 31806706 DOI: 10.1074/jbc.ra119.011174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Indexed: 11/06/2022] Open
Abstract
Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Brian D Bennett
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709.,Integrative Bioinformatics Support Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| |
Collapse
|
6
|
Transgenerational Perpetuation of CHS Gene Expression and DNA Methylation Status Induced by Short Oligodeoxynucleotides in Flax ( Linum usitatissimum). Int J Mol Sci 2019; 20:ijms20163983. [PMID: 31426274 PMCID: PMC6719086 DOI: 10.3390/ijms20163983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax by ODN technology. The CHS gene encodes a pivotal enzyme in flavonoid biosynthesis. The manipulation of its transcript level was the result of the specific methylation status developed after treatment with ODNs. In further analysis of the application of oligodeoxynucleotides in plants, we will focus on maintaining the methylation status induced originally by ODNs homologous to the regulatory regions of the CHS gene in flax. This article reports the latest investigation applied to stabilization and inheritance of the epigenetic marks induced by plants' treatment with ODNs. The methylation status was analyzed in the particular CCGG motifs located in the CHS gene sequence. Individual plants were able to maintain alterations induced by ODNs. In order to confirm the impact of methylation marks on the nucleosome rearrangement, chromatin accessibility assay was performed. The perpetuation of targeted plant modulation induced by ODNs exhibits strong potential for improving crops and intensified application for medicine, nutrition and industry.
Collapse
|
7
|
Abstract
During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| | - Marian F Laughery
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| |
Collapse
|
8
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
9
|
King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:716-26. [PMID: 22425674 DOI: 10.1016/j.bbagrm.2012.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptor (SR) signaling leads to widespread changes in gene expression, and aberrant SR signaling can lead to malignancies including breast, prostate, and lung cancers. Chromatin remodeling is an essential component of SR signaling, and defining the process of chromatin and nucleosome remodeling during signaling is critical to the continued development of related therapies. The glucocorticoid receptor (GR) is a key SR that activates numerous promoters including the well defined MMTV promoter. The activation of MMTV by GR provides an excellent model for teasing apart the sequence of events between hormone treatment and changes in gene expression. Comparing hormone-induced transcription from stably integrated promoters with defined nucleosomal structure to that from transiently expressed, unstructured promoters permits key distinctions between interactions that require remodeling and those that do not. The importance of co-activators and histone modifications prior to remodeling and the formation of the preinitiation complex that follows can also be clarified by defining key transition points in the propagation of hormonal signals. Combined with detailed mapping of proteins along the promoter, a temporal and spatial understanding of the signaling and remodeling processes begins to emerge. In this review, we examine SR signaling with a focus on GR activation of the MMTV promoter. We also discuss the ATP-dependent remodeling complex SWI/SNF, which provides the necessary remodeling activity during GR signaling and interacts with several SRs. BRG1, the central ATPase of SWI/SNF, also interacts with a set of BAF proteins that help determine the specialized function and fine-tuned regulation of BRG1 remodeling activity. BRG1 regulation comes from its own subdomains as well as its interactive partners. In particular, the HSA domain region of BRG1 and unique features of its ATPase homology appear to play key roles in regulating remodeling function. Details of the inter-workings of this chromatin remodeling protein continue to be revealed and promise to improve our understanding of the mechanism of chromatin remodeling during steroid hormone signaling. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|