1
|
Noberini R, Longhi E, Bonaldi T. A Super-SILAC Approach for Profiling Histone Posttranslational Modifications. Methods Mol Biol 2023; 2603:87-102. [PMID: 36370272 DOI: 10.1007/978-1-0716-2863-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications (PTMs) play an important role in the regulation of gene expression and have been implicated in a multitude of physiological and pathological processes. During the last decade, mass spectrometry (MS) has emerged as the most accurate and versatile tool to quantitate histone PTMs. Stable-isotope labeling by amino acids in cell culture (SILAC) is an MS-based quantitation strategy involving metabolic labeling of cells, which has been applied to global protein profiling as well as histone PTM analysis. The classical SILAC approach is associated with reduced experimental variability and high quantitation accuracy, but provides limited multiplexing capabilities and can be applied only to actively dividing cells, thus excluding clinical samples. Both limitations are overcome by an evolution of classical SILAC involving the use of a mix of heavy-labeled cell lines as a spike-in standard, known as "super-SILAC". In this chapter, we will provide a detailed description of the optimized protocol used in our laboratory to generate a histone-focused super-SILAC mix and employ it as an internal standard for histone PTM quantitation.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elisa Longhi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
2
|
Ma W, Jia J, Huang X, Xie W, Zhang X, Tang J, Lin C, Zhao L, Fang P. Stable isotope labelling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Edwardsiella tarda ATCC 15947 under prolonged cold stress. Microb Pathog 2018; 125:12-19. [PMID: 30201590 DOI: 10.1016/j.micpath.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/15/2023]
Abstract
Edwardsiella tarda poses a threat to human health and has resulted in enormous economic losses in aquaculture. Low temperatures are usually applied to contain the growth of this microorganism. In this study, stable isotope labelling by amino acids in cell culture (SILAC) was used to conduct comparative proteomic quantitation of E. tarda ATCC 15947 under cold stress for two weeks. We identified 1391 proteins, of which 898 were quantifiable. Of these, 72 proteins were upregulated and 164 were downregulated in response to cold stress. Even though E. tarda ATCC 15947 is not a psychrophile, several key proteins related to DNA synthesis and transcription were significantly upregulated. Additionally, proteins related to haemolytic activities and gluconeogenesis were upregulated, even though E. tarda ATCC 15497 is considered non-virulent in aquaculture. This study therefore delineated the specific proteomic response of this E. tarda ATCC 15947 to prolonged cold stress.
Collapse
Affiliation(s)
- Weixing Ma
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China; Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, China
| | - Juntao Jia
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China.
| | - Xiaohua Huang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Wancui Xie
- Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, China
| | - Xiaoliang Zhang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Jing Tang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Chao Lin
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Liqing Zhao
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Peipei Fang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| |
Collapse
|
3
|
Carpy A, Koch A, Bicho CC, Borek WE, Hauf S, Sawin KE, Maček B. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast. Cold Spring Harb Protoc 2017; 2017:pdb.prot091686. [PMID: 28572185 DOI: 10.1101/pdb.prot091686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modern mass spectrometry (MS)-based approaches are capable of identifying and quantifying thousands of proteins and phosphorylation events in a single biological experiment. Here we present a (phospho)proteomic workflow based on in-solution proteome digestion of samples labeled by stable isotope labeling by amino acids in cell culture (SILAC) and phosphopeptide enrichment using strong cation exchange (SCX) and TiO2 chromatographies. These procedures are followed by high-accuracy MS measurement on an Orbitrap mass spectrometer and subsequent bioinformatic processing using MaxQuant software.
Collapse
Affiliation(s)
- Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - André Koch
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen 72076, Germany
| | - Claudia C Bicho
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Weronika E Borek
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Silke Hauf
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen 72076, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Boris Maček
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
4
|
Cuomo A, Soldi M, Bonaldi T. SILAC-Based Quantitative Strategies for Accurate Histone Posttranslational Modification Profiling Across Multiple Biological Samples. Methods Mol Biol 2017; 1528:97-119. [PMID: 27854018 DOI: 10.1007/978-1-4939-6630-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone posttranslational modifications (hPTMs) play a key role in regulating chromatin dynamics and fine-tuning DNA-based processes. Mass spectrometry (MS) has emerged as a versatile technology for the analysis of histones, contributing to the dissection of hPTMs, with special strength in the identification of novel marks and in the assessment of modification cross talks. Stable isotope labeling by amino acid in cell culture (SILAC), when adapted to histones, permits the accurate quantification of PTM changes among distinct functional states; however, its application has been mainly confined to actively dividing cell lines. A spike-in strategy based on SILAC can be used to overcome this limitation and profile hPTMs across multiple samples. We describe here the adaptation of SILAC to the analysis of histones, in both standard and spike-in setups. We also illustrate its coupling to an implemented "shotgun" workflow, by which heavy arginine-labeled histone peptides, produced upon Arg-C digestion, are qualitatively and quantitatively analyzed in an LC-MS/MS system that combines ultrahigh-pressure liquid chromatography (UHPLC) with new-generation Orbitrap high-resolution instrument.
Collapse
Affiliation(s)
- Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
5
|
Noberini R, Bonaldi T. A Super-SILAC Strategy for the Accurate and Multiplexed Profiling of Histone Posttranslational Modifications. Methods Enzymol 2016; 586:311-332. [PMID: 28137569 DOI: 10.1016/bs.mie.2016.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone posttranslational modifications (hPTMs) generate a complex combinatorial code that plays a critical role in the regulation of gene activity and nuclear architecture during physiological and pathological processes. Mass spectrometry (MS) offers an unbiased, comprehensive, and quantitative view on hPTM patterns, and has emerged as a powerful tool in epigenetic research. Stable isotope labeling by amino acid in cell culture (SILAC) is a MS-based quantitative method that relies on the metabolic labeling of cell populations, which has been widely applied in global proteomic studies and can also be exploited for the accurate quantitation of hPTM changes among distinct functional states. However, the classical SILAC strategy has two main limits: it cannot be applied to more than three cell populations at the time and excludes samples that cannot be metabolically labeled, such as clinical samples. These limitations can be overcome by using a super-SILAC strategy, where a mix of heavy-labeled cell lines is used as a spike-in to analyze any types of samples with high accuracy and high multiplexing capabilities. In this chapter, we will provide a detailed description of a protocol to set up a histone-focused super-SILAC strategy and exploit it to accurately profile hPTMs across multiple samples. As a case study, we will describe a breast cancer-focused super-SILAC approach, which we used in a recent publication to profile hPTMs in frozen and formalin-fixed paraffin-embedded human samples, revealing previously unknown marks that differentiate breast cancer subtypes.
Collapse
Affiliation(s)
- R Noberini
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milano, Italy
| | - T Bonaldi
- European Institute of Oncology, Milano, Italy.
| |
Collapse
|
6
|
Meyer K, Selbach M. Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions. Front Genet 2015; 6:237. [PMID: 26236332 PMCID: PMC4500955 DOI: 10.3389/fgene.2015.00237] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 01/11/2023] Open
Abstract
While the genomic revolution has dramatically accelerated the discovery of disease-associated genes, the functional characterization of the corresponding proteins lags behind. Most proteins fulfill their tasks in complexes with other proteins, and analysis of protein–protein interactions (PPIs) can therefore provide insights into protein function. Several methods can be used to generate large-scale protein interaction networks. However, most of these approaches are not quantitative and therefore cannot reveal how perturbations affect the network. Here, we illustrate how a clever combination of quantitative mass spectrometry with different biochemical methods provides a rich toolkit to study different aspects of PPIs including topology, subunit stoichiometry, and dynamic behavior.
Collapse
Affiliation(s)
- Katrina Meyer
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine , Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine , Berlin, Germany
| |
Collapse
|
7
|
Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 2015; 15:3175-92. [PMID: 26097186 DOI: 10.1002/pmic.201500108] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Shasha Wei
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Yanlong Ji
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
8
|
Dittmar G, Selbach M. SILAC for biomarker discovery. Proteomics Clin Appl 2015; 9:301-6. [PMID: 25504673 DOI: 10.1002/prca.201400112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
SILAC has been employed in MS-based proteomics for nearly a decade. This method is based on cells in culture metabolically incorporating isotope-coded essential amino acids and allows the quantification of global protein populations to identify characteristic changes. Variations of this technique developed over the years allow the application of SILAC not only to cell culture derived samples but also to tissues and human specimens, making this powerful technique amenable to clinically relevant samples. In this review, we provide an overview of different SILAC-derived methods and their use in the identification and development of biomarkers.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
9
|
Wohlgemuth I, Lenz C, Urlaub H. Studying macromolecular complex stoichiometries by peptide-based mass spectrometry. Proteomics 2015; 15:862-79. [PMID: 25546807 PMCID: PMC5024058 DOI: 10.1002/pmic.201400466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Abstract
A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide‐based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide‐based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
10
|
van Wijk KJ. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:75-111. [PMID: 25580835 DOI: 10.1146/annurev-arplant-043014-115547] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
11
|
Henningsen J, Blagoev B, Kratchmarova I. Analysis of secreted proteins using SILAC. Methods Mol Biol 2014; 1188:313-26. [PMID: 25059621 DOI: 10.1007/978-1-4939-1142-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable isotopes. Here, we describe the use of Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative analysis of the skeletal muscle secretome during myogenesis.
Collapse
Affiliation(s)
- Jeanette Henningsen
- Center for Experimental BioInformatics (CEBI), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | | | | |
Collapse
|
12
|
Ponnala L, Wang Y, Sun Q, van Wijk KJ. Correlation of mRNA and protein abundance in the developing maize leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:424-40. [PMID: 24547885 DOI: 10.1111/tpj.12482] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 05/24/2023]
Abstract
To help understand regulation of maize leaf blade development, including sink-source transitions and induction of C4 photosynthesis, we compared large-scale quantitative proteome and transcriptomes collected at specific stages along the developmental maize leaf blade gradient. Proteome data were based on label-free shotgun proteomics (spectral counting) and transcript data were based on RNA-seq using the same source materials, and had been published previously (Nat Genet, 42, 2010, 1060-1067; The Plant Cell, 22, 2010, 3509-3542). Transcript and protein abundance followed near normal distributions, in contrast with several studies with other organisms. Protein observability correlated with transcript abundance following a 'lazy step function' similar to that in bacteria and yeast. mRNA and protein abundance showed significant positive correlations (up to 0.8) for log-transformed length-weighted normalized spectral abundance factor (NSAF) and reads per kilobase of exon model per million mapped reads (RPKM) and non-weighted abundances (NadjSPC and COV) in dependence of function and development. Correlations were much weaker in the leaf 'sink-source' transition zone, i.e. the zone with massive investments in leaf chloroplast biogenesis and build-up of photosynthetic capacity. Clustering analyses of gene-specific protein-mRNA ratios revealed co-ordinated shifts in control points in gene expression along the leaf blade developmental gradient. The highest protein-mRNA ratio for each gene generally corresponded to leaf developmental stages in which the protein function was most important, with the exception of the 80S ribosome. Specific examples are discussed in the context of C4 photosynthesis, leaf development and sink-source transitions. This large-scale mRNA-protein correlation analysis in plants (maize) using label-free spectral counting for protein quantification and RNA-seq for mRNA abundance will provide a template for future mRNA-protein correlation studies.
Collapse
Affiliation(s)
- Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a widely used approach in quantitative proteomics; however, due to limitations such as required auxotrophy for the amino acids employed for labeling, it was thus far rarely employed in bacteria. Although limitations of SILAC in microbiological applications are significant and restrict its use exclusively to cells cultured in minimal media, we and others have successfully used it to fully label proteomes of model bacteria and measure their relative expression dynamics under different experimental conditions. Here we provide a brief overview of applications of SILAC in bacteria and describe a detailed protocol for SILAC labeling of Escherichia coli and Bacillus subtilis cells in culture, which in many cases can be applied to other members of both gram-positive and gram-negative bacterial species.
Collapse
Affiliation(s)
- Boumediene Soufi
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen, 72076, Germany
| | | |
Collapse
|
14
|
A perspective on proteomics in cell biology. Trends Cell Biol 2013; 24:257-64. [PMID: 24284280 PMCID: PMC3989996 DOI: 10.1016/j.tcb.2013.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/14/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Proteomic strategies facilitate system-wide analyses of protein complexes. Isotope labelling allows quantitative measurement of protein properties, not only their identification. There is a major need to organise effective community sharing of the proteomic data mountain. The integration of proteomic data with other online data repositories must be improved.
During the past 15 years mass spectrometry (MS)-based analyses have become established as the method of choice for direct protein identification and measurement. Owing to the remarkable improvements in the sensitivity and resolution of MS instruments, this technology has revolutionised the opportunities available for the system-wide characterisation of proteins, with wide applications across virtually the whole of cell biology. In this article we provide a perspective on the current state of the art and discuss how the future of cell biology research may benefit from further developments and applications in the field of MS and proteomics, highlighting the major challenges ahead for the community in organising the effective sharing and integration of the resulting data mountain.
Collapse
|