1
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Multistage mass spectrometry with intelligent precursor selection for N-glycan branching pattern analysis. Carbohydr Polym 2020; 237:116122. [DOI: 10.1016/j.carbpol.2020.116122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
|
3
|
Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2018; 142:700-720. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-translational modification of proteins by the attachment of glycans is governed by a variety of highly specific enzymes and is associated with fundamental impacts on the parent protein's physical, chemical and biological properties. The inherent connection between cellular physiology and specific glycosylation patterns has been shown to offer potential for diagnostic and prognostic monitoring of altered glycosylation in the disease state. Conversely, glycoprotein based biopharmaceuticals have emerged as dominant therapeutic strategies in the treatment of intricate diseases. Glycosylation present on these biopharmaceuticals represents a major critical quality attribute with impacts on both pharmacokinetics and pharmacodynamics. The structural variety of glycans, based upon their non-template driven assembly, poses a significant analytical challenge for both qualitative and quantitative analysis. Labile monosaccharide constituents, isomeric species and often low sample availability from biological sources necessitates meticulous sample handling, ultra-high-resolution analytical separation and sensitive detection techniques, respectively. In this article a critical review of analytical quantitation approaches using liquid phase separations coupled to mass spectrometry for released glycans of biopharmaceutical and biomedical significance is presented. Considerations associated with sample derivatisation strategies, ionisation, relative quantitation through isotopic as well as isobaric labelling, metabolic/enzymatic incorporation and targeted analysis are all thoroughly discussed.
Collapse
Affiliation(s)
- Josh Smith
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland
| | - Stefan Mittermayr
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Csaba Váradi
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Campbell MP. A Review of Software Applications and Databases for the Interpretation of Glycopeptide Data. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1601.1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Zhang P, Woen S, Wang T, Liau B, Zhao S, Chen C, Yang Y, Song Z, Wormald MR, Yu C, Rudd PM. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 2016; 21:740-65. [DOI: 10.1016/j.drudis.2016.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
|
7
|
Falck D, Jansen BC, Plomp R, Reusch D, Haberger M, Wuhrer M. Glycoforms of Immunoglobulin G Based Biopharmaceuticals Are Differentially Cleaved by Trypsin Due to the Glycoform Influence on Higher-Order Structure. J Proteome Res 2015; 14:4019-28. [PMID: 26244886 DOI: 10.1021/acs.jproteome.5b00573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been reported that glycosylation can influence the proteolytic cleavage of proteins. A thorough investigation of this phenomenon was conducted for the serine protease trypsin, which is essential in many proteomics workflows. Monoclonal and polyclonal immunoglobulin G biopharmaceuticals were employed as model substances, which are highly relevant for the bioanalytical applications. Relative quantitation of glycopeptides derived from the conserved Fc-glycosylation site allowed resolution of biases on the level of individual glycan compositions. As a result, a strong preferential digestion of high mannose, hybrid, alpha2-3-sialylated and bisected glycoforms was observed over the most abundant neutral, fucosylated glycoforms. Interestingly, this bias was, to a large extent, dependent on the intact higher order structure of the antibodies and, consequently, was drastically reduced in denatured versus intact antibodies. In addition, a cleavage protocol with acidic denaturation was tested, which featured reduced hands-on time and toxicity while showing highly comparable results to a published denaturation, reduction, and alkylation based protocol.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH , 82377 Penzberg, Germany
| | - Markus Haberger
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH , 82377 Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Division of BioAnalytical Chemistry, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Liu G, Neelamegham S. Integration of systems glycobiology with bioinformatics toolboxes, glycoinformatics resources, and glycoproteomics data. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:163-81. [PMID: 25871730 DOI: 10.1002/wsbm.1296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The glycome constitutes the entire complement of free carbohydrates and glycoconjugates expressed on whole cells or tissues. 'Systems Glycobiology' is an emerging discipline that aims to quantitatively describe and analyse the glycome. Here, instead of developing a detailed understanding of single biochemical processes, a combination of computational and experimental tools are used to seek an integrated or 'systems-level' view. This can explain how multiple biochemical reactions and transport processes interact with each other to control glycome biosynthesis and function. Computational methods in this field commonly build in silico reaction network models to describe experimental data derived from structural studies that measure cell-surface glycan distribution. While considerable progress has been made, several challenges remain due to the complex and heterogeneous nature of this post-translational modification. First, for the in silico models to be standardized and shared among laboratories, it is necessary to integrate glycan structure information and glycosylation-related enzyme definitions into the mathematical models. Second, as glycoinformatics resources grow, it would be attractive to utilize 'Big Data' stored in these repositories for model construction and validation. Third, while the technology for profiling the glycome at the whole-cell level has been standardized, there is a need to integrate mass spectrometry derived site-specific glycosylation data into the models. The current review discusses progress that is being made to resolve the above bottlenecks. The focus is on how computational models can bridge the gap between 'data' generated in wet-laboratory studies with 'knowledge' that can enhance our understanding of the glycome.
Collapse
Affiliation(s)
- Gang Liu
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Kamiya Y, Satoh T, Kato K. Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 2014; 26:44-53. [PMID: 24841384 DOI: 10.1016/j.sbi.2014.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023]
Abstract
Because of the complexity, heterogeneity, and flexibility of the glycans, the structural analysis of glycoproteins has been eschewed until recently, with a few prominent exceptions. This aversion may have branded structural biologists as glycophobics. However, recent technological advancements in glycoprotein expression systems, employing genetically engineered production vehicles derived from mammalian, insect, yeast, and even bacterial cells, have yielded encouraging breakthroughs. The major advance is the active control of glycoform expression of target glycoproteins based on the genetic manipulation of glycan biogenetic pathways, which was previously overlooked, abolished, or considered unmanageable. Moreover, synthetic and/or chemoenzymatic approaches now enable the preparation of glycoproteins with uniform glycoforms designed in a tailored fashion.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan; GLYENCE Co., Ltd., 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858, Japan.
| |
Collapse
|
10
|
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94:161-75. [PMID: 24507773 DOI: 10.1016/j.ajhg.2013.10.024] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations' impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans.
Collapse
Affiliation(s)
- Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
13
|
Almeida A, Ferreira JA, Teixeira F, Gomes C, Cordeiro MNDS, Osório H, Santos LL, Reis CA, Vitorino R, Amado F. Challenging the limits of detection of sialylated Thomsen-Friedenreich antigens by in-gel deglycosylation and nano-LC-MALDI-TOF-MS. Electrophoresis 2013; 34:2337-41. [DOI: 10.1002/elps.201300148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Andreia Almeida
- Department of Chemistry, Mass Spectrometry Centre; QOPNA; University of Aveiro; Campus de Santiago; Aveiro; Portugal
| | | | - Filipe Teixeira
- REQUIMTE, Department of Chemistry and Biochemistry; Faculty of Sciences, University of Porto; Portugal
| | - Catarina Gomes
- Institute of Molecular Pathology and Immunology; University of Porto (IPATIMUP); Porto; Portugal
| | - M. Natália D. S. Cordeiro
- REQUIMTE, Department of Chemistry and Biochemistry; Faculty of Sciences, University of Porto; Portugal
| | | | | | | | - Rui Vitorino
- Department of Chemistry, Mass Spectrometry Centre; QOPNA; University of Aveiro; Campus de Santiago; Aveiro; Portugal
| | | |
Collapse
|
14
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 2013. [DOI: 10.1039/c3ra42969e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|