1
|
Fuenmayor-Boscán A, Hernández-Rincón I, Arismendi-Morillo G, Mengual E, Rivero Z, Romero G, Lizarzábal M, Álvarez-Mon M. Changes in the severity of gastric mucosal inflammation associated with Helicobacter pylori in humans coinfected with intestinal helminths. Indian J Gastroenterol 2020; 39:186-195. [PMID: 32436176 DOI: 10.1007/s12664-020-01023-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Though a few studies in animal models suggest that intestinal helminths (IH) favorably affect evolution of gastritis associated with Helicobacter pylori (H. pylori) the studies supporting this concept in humans are only a few and are based on serological data. METHODS To evaluate the possible influence of IH on the human gastric mucosa, three groups of Venezuelan adults with gastropathy (endoscopically diagnosed) were studied: H. pylori-/IH- (n = 17), H. pylori+/IH- (n = 18), and H. pylori+/IH+ (n = 11). Histological analysis (hematoxylin-eosin) and immunohistochemical staining (peroxidase) for cytokines interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 4 (IL-4) were undertaken in gastric antral biopsies. RESULTS Expression of the four cytokines was detected in all individuals in varying degrees, but proinflammatory cytokines were expressed in a higher degree in the H. pylori+/IH- group, mainly IL-1β (Th1-dominant immune response), associated with a higher degree of both histological inflammation and gastric cancer risk index (GCRI), as compared to the H. pylori-/IH- group. In contrast, an increased expression of IL-4 and a reduced expression of proinflammatory cytokines (Th2-dominant response), plus the tendency to a lower degree of mononuclear infiltration, mucosal atrophy in gastric corpus, and GCRI, were evidenced in the coinfected group. CONCLUSIONS The findings of the present study is perhaps the first histological evidence of a possible modulatory effect of IH on the gastric mucosal inflammatory response due to H. pylori infection in humans.
Collapse
Affiliation(s)
- Alisbeth Fuenmayor-Boscán
- Departamento de Microbiología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela. .,Laboratorio de Bacteriología, Edificio Ciencia y Salud, planta baja, Avenida 18 con calle 65, Apartado Postal 15165, Maracaibo, Venezuela.
| | - Ileana Hernández-Rincón
- Instituto de Investigaciones Biológicas "Doctores Orlando Castejón y Haydée V. Castejón", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas "Doctores Orlando Castejón y Haydée V. Castejón", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Edgardo Mengual
- Instituto de Investigaciones Biológicas "Doctores Orlando Castejón y Haydée V. Castejón", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Zulbey Rivero
- Departamento de Microbiología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Gisela Romero
- Postgrado de Gastroenterología, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Maribel Lizarzábal
- Postgrado de Gastroenterología, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Melchor Álvarez-Mon
- Laboratorio de Enfermedades del Sistema Inmune y Oncológicas, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
2
|
Godinat A, Budin G, Morales AR, Park HM, Sanman LE, Bogyo M, Yu A, Stahl A, Dubikovskaya EA. A biocompatible "split luciferin" reaction and its application for non-invasive bioluminescent imaging of protease activity in living animals. ACTA ACUST UNITED AC 2014; 6:169-189. [PMID: 25205565 DOI: 10.1002/9780470559277.ch140047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The great complexity of many human pathologies, such as cancer, diabetes, and neurodegenerative diseases, requires new tools for studies of biological processes on the whole organism level. The discovery of novel biocompatible reactions has tremendously advanced our understanding of basic biology; however, no efficient tools exist for real-time non-invasive imaging of many human proteases that play very important roles in multiple human disorders. We recently reported that the "split luciferin" biocompatible reaction represents a valuable tool for evaluation of protease activity directly in living animals using bioluminescence imaging (BLI). Since BLI is the most sensitive in vivo imaging modality known to date, this method can be widely applied for the evaluation of the activity of multiple proteases, as well as identification of their new peptide-specific substrates. In this unit, we describe several applications of this "split luciferin" reaction for quantification of protease activities in test tube assays and living animals.
Collapse
Affiliation(s)
- Aurélien Godinat
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Alma R Morales
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Hyo Min Park
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Laura E Sanman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Allen Yu
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Elena A Dubikovskaya
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhu Q, Kosoy M, Olival KJ, Dittmar K. Horizontal transfers and gene losses in the phospholipid pathway of bartonella reveal clues about early ecological niches. Genome Biol Evol 2014; 6:2156-69. [PMID: 25106622 PMCID: PMC4159011 DOI: 10.1093/gbe/evu169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution.
Collapse
Affiliation(s)
- Qiyun Zhu
- Department of Biological Sciences, University at Buffalo, State University of New York
| | - Michael Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Foothills Research Campus, Fort Collins, Colorado
| | | | - Katharina Dittmar
- Department of Biological Sciences, University at Buffalo, State University of New York Graduate Program of Evolution, Ecology, and Behavior, University at Buffalo, State University of New York
| |
Collapse
|
4
|
Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, Le Loir Y, Ogliastro M, Petit MA, Roumagnac P, Candresse T. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 2014; 4:29. [PMID: 24634890 PMCID: PMC3942874 DOI: 10.3389/fcimb.2014.00029] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/15/2014] [Indexed: 01/10/2023] Open
Abstract
The concept of pathogenesis has evolved considerably over recent years, and the scenario "a microbe + virulence factors = disease" is probably far from reality in a number of cases. Actual pathogens have extremely broad biological diversity and are found in all major groups of microorganisms (viruses, bacteria, fungi, protozoa…). Their pathogenicity results from strong and often highly specific interactions they have with either their microbial environment, hosts and/or arthropod vectors. In this review, we explore the contribution of metagenomic approaches toward understanding pathogens within the context of microbial communities. With this broader view, we discussed the concept of "pathobiome" and the research questions that this raises.
Collapse
Affiliation(s)
| | - Emmanuel Albina
- CIRAD, UMR CMAEE Petit-Bourg, Guadeloupe, France ; INRA, UMR 1309 CMAEE Montpellier, France ; INRA, Université de Toulouse, INP, ENVT, UMR 1225, IHAP Toulouse, France
| | - Christine Citti
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez, France
| | - Jean-Franҫois Cosson
- INRA, Institut de Recherche en Horticulture et Semences, UMR 1345 Angers, France
| | | | | | - Yves Le Loir
- Agrocampus Ouest, UMR 1253 STLO Rennes, France ; INRA, UMR 1333 DGIMI Montpellier, France
| | | | | | - Philippe Roumagnac
- UMR 1332 Biologie du Fruit et Pathologie, INRA Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux Villenave d'Ornon Cedex, France
| |
Collapse
|
5
|
Del Chierico F, Petrucca A, Vernocchi P, Bracaglia G, Fiscarelli E, Bernaschi P, Muraca M, Urbani A, Putignani L. Proteomics boosts translational and clinical microbiology. J Proteomics 2013; 97:69-87. [PMID: 24145144 DOI: 10.1016/j.jprot.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/28/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
Abstract
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Petrucca
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Diagnostic Science, Sant'Andrea Hospital, Via di Grottarossa 1035, 00185 Rome, Italy
| | - P Vernocchi
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - G Bracaglia
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - E Fiscarelli
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - P Bernaschi
- Unit of Microbiology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - M Muraca
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Urbani
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy; IRCCS-Santa Lucia Foundation, Rome, Italy
| | - L Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
6
|
Flahou B, Haesebrouck F, Smet A, Yonezawa H, Osaki T, Kamiya S. Gastric and enterohepatic non-Helicobacter pylori Helicobacters. Helicobacter 2013; 18 Suppl 1:66-72. [PMID: 24011248 DOI: 10.1111/hel.12072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A substantial number of reports published in the last year have contributed to a better understanding of both human and animal infection with non-Helicobacter pylori Helicobacter species (NHPH). Gastric infection of humans with Helicobacter suis and Helicobacter felis as well as unidentified NHPH has been described to cause a chronic gastritis and a variety of clinical symptoms, whereas enterohepatic NHPH, including Helicobacter cinaedi, Helicobacter bilis, and Helicobacter canis, have been reported to be associated with human diseases such as bacteremia, cellulitis, cutaneous diseases, and fever of unknown origin in immunocompromised hosts. In various animal species, including dogs and laboratory mice, high rates of infection with NHPH were described. For gastric NHPH, mainly H. suis and H. felis infection was studied, revealing that differences in the immune response evoked in the host do exist when compared to Helicobacter pylori. Pathogenic mechanisms of infection with Helicobacter pullorum, H. bilis, and Helicobacter hepaticus were investigated, as well as immune responses involved in H. bilis-, Helicobacter typhlonius-, and H. hepaticus-induced intestinal inflammation. Complete genome sequences of Helicobacter heilmannii strain ASB1 and a H. cinaedi strain isolated in a case of human bacteremia were published, as well as comparative genomics of a human-derived Helicobacter bizzozeronii strain and proteome or secretome analyses for H. hepaticus and Helicobacter trogontum, respectively. Molecular analysis has revealed a function for type VI secretion systems of H. hepaticus and H. pullorum, the Helicobacter mustelae iron urease, and several other functional components of NHPH. In each section of this chapter, new findings on gastric NHPH will first be discussed, followed by those on enterohepatic Helicobacter species.
Collapse
Affiliation(s)
- Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Godinat A, Park HM, Miller SC, Cheng K, Hanahan D, Sanman LE, Bogyo M, Yu A, Nikitin GF, Stahl A, Dubikovskaya EA. A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice. ACS Chem Biol 2013; 8:987-99. [PMID: 23463944 DOI: 10.1021/cb3007314] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of biocompatible reactions had a tremendous impact on chemical biology, allowing the study of numerous biological processes directly in complex systems. However, despite the fact that multiple biocompatible reactions have been developed in the past decade, very few work well in living mice. Here we report that D-cysteine and 2-cyanobenzothiazoles can selectively react with each other in vivo to generate a luciferin substrate for firefly luciferase. The success of this "split luciferin" ligation reaction has important implications for both in vivo imaging and biocompatible labeling strategies. First, the production of a luciferin substrate can be visualized in a live mouse by bioluminescence imaging (BLI) and furthermore allows interrogation of targeted tissues using a "caged" luciferin approach. We therefore applied this reaction to the real-time noninvasive imaging of apoptosis associated with caspase 3/7. Caspase-dependent release of free D-cysteine from the caspase 3/7 peptide substrate Asp-Glu-Val-Asp-D-Cys (DEVD-(D-Cys)) allowed selective reaction with 6-amino-2-cyanobenzothiazole (NH(2)-CBT) in vivo to form 6-amino-D-luciferin with subsequent light emission from luciferase. Importantly, this strategy was found to be superior to the commercially available DEVD-aminoluciferin substrate for imaging of caspase 3/7 activity. Moreover, the split luciferin approach enables the modular construction of bioluminogenic sensors, where either or both reaction partners could be caged to report on multiple biological events. Lastly, the luciferin ligation reaction is 3 orders of magnitude faster than Staudinger ligation, suggesting further applications for both bioluminescence and specific molecular targeting in vivo.
Collapse
Affiliation(s)
- Aurélien Godinat
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology of Lausanne, LCBIM, CH-1015 Lausanne, Switzerland
| | - Hyo Min Park
- Department of Nutritional Science
and Toxicology, University of California Berkeley, Berkeley, California 94720, United States
| | - Stephen C. Miller
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ke Cheng
- The Swiss Institute for Experimental
Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology of Lausanne, CH-1015 Lausanne,
Switzerland
| | - Douglas Hanahan
- The Swiss Institute for Experimental
Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology of Lausanne, CH-1015 Lausanne,
Switzerland
| | | | | | - Allen Yu
- Department of Nutritional Science
and Toxicology, University of California Berkeley, Berkeley, California 94720, United States
| | - Gennady F. Nikitin
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology of Lausanne, LCBIM, CH-1015 Lausanne, Switzerland
| | - Andreas Stahl
- Department of Nutritional Science
and Toxicology, University of California Berkeley, Berkeley, California 94720, United States
| | - Elena A. Dubikovskaya
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology of Lausanne, LCBIM, CH-1015 Lausanne, Switzerland
| |
Collapse
|