1
|
Kolosova NP, Ilyicheva TN, Unguryan VV, Danilenko AV, Svyatchenko SV, Onhonova GS, Goncharova NI, Kosenko MN, Gudymo AS, Marchenko VY, Shvalov AN, Susloparov IM, Tregubchak TV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Re-Emergence of Circulation of Seasonal Influenza during COVID-19 Pandemic in Russia and Receptor Specificity of New and Dominant Clade 3C.2a1b.2a.2 A(H3N2) Viruses in 2021-2022. Pathogens 2022; 11:1388. [PMID: 36422639 PMCID: PMC9698969 DOI: 10.3390/pathogens11111388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2023] Open
Abstract
The circulation of seasonal influenza in 2020-2021 around the world was drastically reduced after the start of the COVID-19 pandemic and the implementation of mitigation strategies. The influenza virus circulation reemerged in 2021-2022 with the global spread of the new genetic clade 3C.2a1b.2a.2 of A(H3N2) viruses. The purpose of this study was to characterize influenza viruses in the 2021-2022 season in Russia and to analyze the receptor specificity properties of the 3C.2a1b.2a.2 A(H3N2) viruses. Clinical influenza samples were collected at the local Sanitary-and-Epidemiological Centers of Rospotrebnadzor. Whole genome sequencing was performed using NGS. The receptor specificity of hemagglutinin was evaluated using molecular modeling and bio-layer interferometry. Clinical samples from 854 cases of influenza A and B were studied; A(H3N2) viruses were in the majority of the samples. All genetically studied A(H3N2) viruses belonged to the new genetic clade 3C.2a1b.2a.2. Molecular modeling analysis suggested a higher affinity of hemagglutinin of 3C.2a1b.2a.2. A(H3N2) viruses to the α2,6 human receptor. In vitro analysis using a trisaccharide 6'-Sialyl-N-acetyllactosamine receptor analog did not resolve the differences in the receptor specificity of 3C.2a1b.2a.2 clade viruses from viruses belonging to the 3C.2a1b.2a.1 clade. Further investigation of the A(H3N2) viruses is required for the evaluation of their possible adaptive advantages. Constant monitoring and characterization of influenza are critical for epidemiological analysis.
Collapse
Affiliation(s)
- Natalia P. Kolosova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Tatiana N. Ilyicheva
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Vasily V. Unguryan
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V. Danilenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Svetlana V. Svyatchenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Galina S. Onhonova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Natalia I. Goncharova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maksim N. Kosenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Andrey S. Gudymo
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Vasiliy Y. Marchenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Alexander N. Shvalov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Ivan M. Susloparov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Tatiana V. Tregubchak
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Elena V. Gavrilova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Rinat A. Maksyutov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Alexander B. Ryzhikov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| |
Collapse
|
2
|
Ben Hlima H, Farhat A, Akermi S, Khemakhem B, Ben Halima Y, Michaud P, Fendri I, Abdelkafi S. In silico evidence of antiviral activity against SARS-CoV-2 main protease of oligosaccharides from Porphyridium sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155580. [PMID: 35500710 PMCID: PMC9052773 DOI: 10.1016/j.scitotenv.2022.155580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 05/02/2023]
Abstract
The coronavirus pandemic (COVID-19) has created an urgent need to develop effective strategies for prevention and treatment. In this context, therapies against protease Mpro, a conserved viral target, would be essential to contain the spread of the virus and reduce mortality. Using combined techniques of structure modelling, in silico docking and pharmacokinetics prediction, many compounds from algae were tested for their ability to inhibit the SARS-CoV-2 main protease and compared to the recent recognized drug Paxlovid. The screening of 27 algal molecules including 15 oligosaccharides derived from sulfated and non-sulphated polysaccharides, eight pigments and four poly unsaturated fatty acids showed high affinities to interact with the protein active site. Best candidates showing high docking scores in comparison with the reference molecule were sulfated tri-, tetra- and penta-saccharides from Porphyridium sp. exopolysaccharides (SEP). Structural and energetic analyses over 100 ns MD simulation demonstrated high SEP fragments-Mpro complex stability. Pharmacokinetics predictions revealed the prospects of the identified molecules as potential drug candidates.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Ameny Farhat
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Sarra Akermi
- Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of Sfax, Tunisia
| | - Bassem Khemakhem
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Youssef Ben Halima
- RIADI Labs, National School of Computer Science, Manouba University, Manouba, Tunisia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
3
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
4
|
Salih AEM, Thissera B, Yaseen M, Hassane ASI, El-Seedi HR, Sayed AM, Rateb ME. Marine Sulfated Polysaccharides as Promising Antiviral Agents: A Comprehensive Report and Modeling Study Focusing on SARS CoV-2. Mar Drugs 2021; 19:406. [PMID: 34436245 PMCID: PMC8401819 DOI: 10.3390/md19080406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Abdalla E. M. Salih
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.E.M.S.); (B.T.); (M.Y.); (A.S.I.H.)
| | - Bathini Thissera
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.E.M.S.); (B.T.); (M.Y.); (A.S.I.H.)
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.E.M.S.); (B.T.); (M.Y.); (A.S.I.H.)
| | - Ahmed S. I. Hassane
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.E.M.S.); (B.T.); (M.Y.); (A.S.I.H.)
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Box 591, SE 751 24 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.E.M.S.); (B.T.); (M.Y.); (A.S.I.H.)
| |
Collapse
|
5
|
Nance ML, Labonte JW, Adolf-Bryfogle J, Gray JJ. Development and Evaluation of GlycanDock: A Protein-Glycoligand Docking Refinement Algorithm in Rosetta. J Phys Chem B 2021; 125:10.1021/acs.jpcb.1c00910. [PMID: 34133179 PMCID: PMC8742512 DOI: 10.1021/acs.jpcb.1c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrate chains are ubiquitous in the complex molecular processes of life. These highly diverse chains are recognized by a variety of protein receptors, enabling glycans to regulate many biological functions. High-resolution structures of protein-glycoligand complexes reveal the atomic details necessary to understand this level of molecular recognition and inform application-focused scientific and engineering pursuits. When experimental challenges hinder high-throughput determination of quality structures, computational tools can, in principle, fill the gap. In this work, we introduce GlycanDock, a residue-centric protein-glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. We performed a benchmark docking assessment using a set of 109 experimentally determined protein-glycoligand complexes as well as 62 unbound protein structures. The GlycanDock algorithm can sample and discriminate among protein-glycoligand models of native-like structural accuracy with statistical reliability from starting structures of up to 7 Å root-mean-square deviation in the glycoligand ring atoms. We show that GlycanDock-refined models qualitatively replicated the known binding specificity of a bacterial carbohydrate-binding module. Finally, we present a protein-glycoligand docking pipeline for generating putative protein-glycoligand complexes when only the glycoligand sequence and unbound protein structure are known. In combination with other carbohydrate modeling tools, the GlycanDock docking refinement algorithm will accelerate research in the glycosciences.
Collapse
Affiliation(s)
- Morgan L. Nance
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17603, United States
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Jared Adolf-Bryfogle
- Protein Design Lab, Institute for Protein Innovation, Boston, Massachusetts 02115, United States
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
del Hierro I, Mélida H, Broyart C, Santiago J, Molina A. Computational prediction method to decipher receptor-glycoligand interactions in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1710-1726. [PMID: 33316845 PMCID: PMC8048873 DOI: 10.1111/tpj.15133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-β-d-(GlcNAc)6 ) and laminarihexaose (1,3-β-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-β-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-β-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.
Collapse
Affiliation(s)
- Irene del Hierro
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Present address:
Área de Fisiología VegetalDepartamento de Ingeniería y Ciencias AgrariasUniversidad de León24071LeónSpain
| | - Caroline Broyart
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Julia Santiago
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| |
Collapse
|
7
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
8
|
Lacetera A, Berbís MÁ, Nurisso A, Jiménez-Barbero J, Martín-Santamaría S. Computational Chemistry Tools in Glycobiology: Modelling of Carbohydrate–Protein Interactions. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular modelling provides a major impact in the field of glycosciences, helping in the characterisation of the molecular basis of the recognition between lectins from pathogens and human glycoconjugates, and in the design of glycocompounds with anti-infectious properties. The conformational properties of oligosaccharides are complex, and therefore, the simulation of these properties is a challenging task. Indeed, the development of suitable force fields is required for the proper simulation of important problems in glycobiology, such as the interatomic interactions responsible for oligosaccharide and glycoprotein dynamics, including O-linkages in oligo- and polysaccharides, and N- and O-linkages in glycoproteins. The computational description of representative examples is discussed, herein, related to biologically active oligosaccharides and their interaction with lectins and other proteins, and the new routes open for the design of glycocompounds with promising biological activities.
Collapse
Affiliation(s)
- Alessandra Lacetera
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - M. Álvaro Berbís
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences University of Geneva, University of Lausanne, Rue Michel Servet 1 CH-1211 Geneva 4 Switzerland
| | | | | |
Collapse
|
9
|
Feng T, Li M, Zhou J, Zhuang H, Chen F, Ye R, Campanella O, Fang Z. Application of molecular dynamics simulation in food carbohydrate research—a review. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Force fields and scoring functions for carbohydrate simulation. Carbohydr Res 2015; 401:73-81. [DOI: 10.1016/j.carres.2014.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
|
11
|
Frank M. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations. Methods Mol Biol 2015; 1273:359-77. [PMID: 25753720 DOI: 10.1007/978-1-4939-2343-4_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).
Collapse
Affiliation(s)
- Martin Frank
- Biognos AB, Generatorsgatan 1, 41705, Göteborg, Sweden,
| |
Collapse
|
12
|
Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Methods Mol Biol 2015; 1229:289-314. [PMID: 25325961 DOI: 10.1007/978-1-4939-1714-3_24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prediction of high-affinity and/or high-specificity protein-glycosaminoglycan (GAG) interactions is an inherently difficult task, due to several factors including the shallow nature of the typical GAG-binding site and the inherent size, flexibility, diversity, and polydisperse nature of the GAG molecules. Here, we present a generally applicable methodology termed Combinatorial Library Virtual Screening (CVLS) that can identify potential high-affinity, high-specificity protein-GAG interactions from very large GAG combinatorial libraries and a suitable GAG-binding protein. We describe the CVLS approach along with the rationale behind it and provide validation for the method using the well-known antithrombin-thrombin-heparin system.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA, 23298, USA
| | | | | | | |
Collapse
|
13
|
Grant OC, Woods RJ. Recent advances in employing molecular modelling to determine the specificity of glycan-binding proteins. Curr Opin Struct Biol 2014; 28:47-55. [PMID: 25108191 DOI: 10.1016/j.sbi.2014.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
Impressive improvements in docking performance can be achieved by applying energy bonuses to poses in which glycan hydroxyl groups occupy positions otherwise preferred by bound waters. In addition, inclusion of glycosidic conformational energies allows unlikely glycan conformations to be appropriately penalized. A method for predicting the binding specificity of glycan-binding proteins has been developed, which is based on grafting glycan branches onto a minimal binding determinant in the binding site. Grafting can be used either to screen virtual libraries of glycans, such as the known glycome, or to identify docked poses of minimal binding determinants that are consistent with specificity data. The reviewed advances allow accurate modelling of carbohydrate-protein 3D co-complexes, but challenges remain in ranking the affinity of congeners.
Collapse
Affiliation(s)
- Oliver C Grant
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States; School of Chemistry, University Road, National University of Ireland, Galway, Ireland.
| |
Collapse
|
14
|
Nivedha AK, Makeneni S, Foley BL, Tessier MB, Woods RJ. Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff. J Comput Chem 2014; 35:526-39. [PMID: 24375430 PMCID: PMC3936473 DOI: 10.1002/jcc.23517] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/14/2013] [Accepted: 11/24/2013] [Indexed: 11/10/2022]
Abstract
Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anticarbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs.
Collapse
Affiliation(s)
- Anita K. Nivedha
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Spandana Makeneni
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Robert J. Woods
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
15
|
Maestre-Reyna M, Wu WJ, Wang AHJ. Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLoS One 2013; 8:e82458. [PMID: 24340031 PMCID: PMC3855419 DOI: 10.1371/journal.pone.0082458] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
V. cholerae can form sessile biofilms associated with abiotic surfaces, cyanobacteria, zoo-plankton, mollusks, or crustaceans. Along with the vibrio polysaccharide, secreted proteins of the rbm gene cluster are key to the biofilm ultrastructure. Here we provide a thorough structural characterization of RbmA, a protein involved in mediating cell-cell and cell-biofilm contacts. We correlate our structural findings with initial ligand specificity screening results, NMR protein-ligand interaction analysis, and complement our results with a full biocomputational study.
Collapse
Affiliation(s)
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Ballut L, Sapay N, Chautard E, Imberty A, Ricard-Blum S. Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. J Mol Recognit 2013; 26:76-85. [PMID: 23334915 DOI: 10.1002/jmr.2250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
Abstract
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD-dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD-independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf-I domain of the α subunit, and the top of the β subunit of RGD-dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD-dependent but not of RGD-independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 5086 CNRS-Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|