1
|
Luiza-Batista C, Nardella F, Thiberge S, Serra-Hassoun M, Ferreira MU, Scherf A, Garcia S. Flowcytometric and ImageStream Rna-Fish Gene Expression, Quantification and Phenotypic Characterization of Blood Sporozoites and Sporozoites From Human Malaria Species. J Infect Dis 2022; 225:1621-1625. [PMID: 34453537 PMCID: PMC9071310 DOI: 10.1093/infdis/jiab431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
We adapted the RNA FISH Stellaris method to specifically detect the expression of Plasmodium genes by flow cytometry and ImageStream (Flow-FISH). This new method accurately quantified the erythrocytic forms of (1) Plasmodium falciparum and Plasmodium vivax and (2) the sexual stages of P vivax from patient isolates. ImageStream analysis of liver stage sporozoites using a combination of surface circumsporozoite protein (CSP), deoxyribonucleic acid, and 18S RNA labeling proved that the new Flow-FISH is suitable for gene expression studies of transmission stages. This powerful multiparametric single-cell method offers a platform of choice for both applied and fundamental research on the biology of malaria parasites.
Collapse
Affiliation(s)
- Camilla Luiza-Batista
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du vivant, Paris, France
| | - Flore Nardella
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Sabine Thiberge
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Malika Serra-Hassoun
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Artur Scherf
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Sylvie Garcia
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| |
Collapse
|
2
|
Sindikubwabo F, Ding S, Hussain T, Ortet P, Barakat M, Baumgarten S, Cannella D, Palencia A, Bougdour A, Belmudes L, Couté Y, Tardieux I, Botté CY, Scherf A, Hakimi MA. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. eLife 2017; 6:29391. [PMID: 29101771 PMCID: PMC5685513 DOI: 10.7554/elife.29391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
An unusual genome architecture characterizes the two related human parasitic pathogens Plasmodium falciparum and Toxoplasma gondii. A major fraction of the bulk parasite genome is packaged as transcriptionally permissive euchromatin with few loci embedded in silenced heterochromatin. Primary chromatin shapers include histone modifications at the nucleosome lateral surface close to the DNA but their mode of action remains unclear. We now identify versatile modifications at Lys31 within the globular domain of histone H4 that crucially determine genome organization and expression in Apicomplexa parasites. H4K31 acetylation at the promoter correlates with, and perhaps directly regulates, gene expression in both parasites. By contrast, monomethylated H4K31 is enriched in the core body of T. gondii active genes but inversely correlates with transcription, whereas it is unexpectedly enriched at transcriptionally inactive pericentromeric heterochromatin in P. falciparum, a region devoid of the characteristic H3K9me3 histone mark and its downstream effector HP1.
Collapse
Affiliation(s)
- Fabien Sindikubwabo
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Shuai Ding
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Tahir Hussain
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Philippe Ortet
- Aix-Marseille Univ, CEA, CNRS, UMR 7265, BIAM-LEMIRE, St-Paul-lez-Durance, France
| | - Mohamed Barakat
- Aix-Marseille Univ, CEA, CNRS, UMR 7265, BIAM-LEMIRE, St-Paul-lez-Durance, France
| | - Sebastian Baumgarten
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, Grenoble, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y Botté
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Guizetti J, Barcons-Simon A, Scherf A. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite. Nucleic Acids Res 2016; 44:9710-9718. [PMID: 27466391 PMCID: PMC5175341 DOI: 10.1093/nar/gkw664] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/14/2022] Open
Abstract
Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens.
Collapse
Affiliation(s)
- Julien Guizetti
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France .,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| | - Anna Barcons-Simon
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France.,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France .,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| |
Collapse
|
4
|
Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature 2014; 513:431-5. [PMID: 25043062 DOI: 10.1038/nature13468] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
Abstract
Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.
Collapse
|
5
|
Nuclear pores and perinuclear expression sites of var and ribosomal DNA genes correspond to physically distinct regions in Plasmodium falciparum. EUKARYOTIC CELL 2013; 12:697-702. [PMID: 23475702 DOI: 10.1128/ec.00023-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human malaria parasite Plasmodium falciparum modifies the erythrocyte it infects by exporting variant proteins to the host cell surface. The var gene family that codes for a large, variant adhesive surface protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) plays a particular role in this process, which is linked to pathogenesis and immune evasion. A single member of this gene family is highly transcribed while the other 59 members remain silenced. Importantly, var gene transcription occurs at a spatially restricted, but yet undefined, perinuclear site that is distinct from repressed var gene clusters. To advance our understanding of monoallelic expression, we investigated whether nuclear pores associate with the var gene expression site. To this end, we studied the nuclear pore organization during the asexual blood stage using a specific antibody directed against a subunit of the nuclear pore, P. falciparum Nup116 (PfNup116). Ring and schizont stage parasites showed highly polarized nuclear pore foci, whereas in trophozoite stage nuclear pores redistributed over the entire nuclear surface. Colocalization studies of var transcripts and anti-PfNup116 antibodies showed clear dissociation between nuclear pores and the var gene expression site in ring stage. Similar results were obtained for another differentially transcribed perinuclear gene family, the ribosomal DNA units. Furthermore, we show that in the poised state, the var gene locus is not physically linked to nuclear pores. Our results indicate that P. falciparum does form compartments of high transcriptional activity at the nuclear periphery which are, unlike the case in yeast, devoid of nuclear pores.
Collapse
|