1
|
Policarpo M, Salzburger W, Maumus F, Gilbert C. Multiple Horizontal Transfers of Immune Genes Between Distantly Related Teleost Fishes. Mol Biol Evol 2025; 42:msaf107. [PMID: 40378191 PMCID: PMC12107551 DOI: 10.1093/molbev/msaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
Horizontal gene transfer (HGT) is less frequent in eukaryotes than in prokaryotes, yet can have strong functional implications and was proposed as a causal factor for major adaptations in several eukaryotic lineages. Most cases of eukaryote HGT reported to date are inter-domain transfers, and few studies have investigated eukaryote-to-eukaryote HGTs. Here, we performed a large-scale survey of HGT among 242 species of ray-finned fishes. We found multiple lines of evidence supporting 19 teleost-to-teleost HGT events that involve 17 different genes in 11 teleost fish orders. The genes involved in these transfers show lower synonymous divergence than expected under vertical transmission, their phylogeny is inconsistent with that of teleost fishes, and they occur at non-syntenic positions in donor and recipient lineages. The distribution of HGT events in the teleost tree is heterogenous, with 8 of the 19 transfers occurring between the same two orders (Osmeriformes and Clupeiformes). Though we favor a scenario involving multiple HGT events, future work should evaluate whether hybridization between species belonging to different teleost orders may generate HGT-like patterns. Besides the previously reported transfer of an antifreeze protein, most transferred genes play roles in immunity or are pore-forming proteins, suggesting that such genes may be more likely than others to confer a strong selective advantage to the recipient species. Overall, our work shows that teleost-to-teleost HGT has occurred on multiple occasions, and it will be worth further quantifying these transfers and evaluating their impact on teleost evolution as more genomes are sequenced.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles 78026, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91198, France
| |
Collapse
|
2
|
Quintão CCR, Camargo LSDA, Brandão HDM, Saraiva NZ, Munk M. Challenges in the use of nanostructures as carriers of nucleic acids in clinical practice. EINSTEIN-SAO PAULO 2022; 20:eRB5898. [PMID: 35195162 PMCID: PMC8815335 DOI: 10.31744/einstein_journal/2022rb5898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
The delivery of nucleic acids to cells is considered a crucial step for the success of genetic modifications aimed at therapeutic purposes or production of genetically modified animals. In this context, nanotechnology is one of the most promising fields of science, with the potential to solve several existing problems. Nanostructures have desirable characteristics to be used as carriers, such as nanometric size, large surface area, cell internalization capacity, prolonged and controlled release, among others. Genetically modified animals can contribute to the production of biopharmaceuticals, through the expression of high-associated-value molecules. The production of these animals, also known as biofactories, further enhances Brazilian agribusiness, since it allows adding value to the final product, and favors the integration between the agricultural market and the pharmaceutical sector. However, there is a growing concern about the safety and possible harmful effects of nanostructures, since data on the safe use of these materials are still insufficient. The objective of this review was to address aspects of the use of nanostructures, mainly carbon nanotubes as nucleic acid carriers, aiming at the production of genetically modified animals, with the certainty that progress in this field of knowledge depends on more information on the mechanisms of interaction between nanostructures, cells and embryos, as well as on its toxicity.
Collapse
|
3
|
Graham LA, Davies PL. Horizontal Gene Transfer in Vertebrates: A Fishy Tale. Trends Genet 2021; 37:501-503. [PMID: 33714557 DOI: 10.1016/j.tig.2021.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
The recent assembly of the herring genome suggests this fish acquired its antifreeze protein gene by horizontal transfer and then passed a copy on to the smelt. The direction of gene transfer is confirmed by some accompanying transposable elements and by the breakage of gene synteny.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
4
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Li XX, Cao PH, Han WX, Xu YK, Wu H, Yu XL, Chen JY, Zhang F, Li YH. Non-invasive metabolomic profiling of culture media of ICSI- and IVF-derived early developmental cattle embryos via Raman spectroscopy. Anim Reprod Sci 2018; 196:99-110. [DOI: 10.1016/j.anireprosci.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
6
|
Sánchez-Villalba E, Arias ME, Loren P, Fuentes F, Pereyra-Bonnet F, Salamone D, Felmer R. Improved expression of green fluorescent protein in cattle embryos produced by ICSI-mediated gene transfer with spermatozoa treated with streptolysin-O. Anim Reprod Sci 2018; 196:130-137. [PMID: 30033189 DOI: 10.1016/j.anireprosci.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
The ICSI-sperm mediated gene transfer (ICSI-SMGT) has been used to produce transgenic mice with high efficiency; however, the efficiency of this technique in farm animals is still less than desirable. Pretreatment of sperm with membrane destabilizing agents can improve the efficiency of ICSI in cattle. The objective of the present study was to evaluate streptolysin-O (SLO) as a novel treatment to permeabilize the bovine sperm membrane and assess its effect on efficiency of generating transgenic embryos by ICSI-SMGT. First, there was evaluation of the plasma membrane integrity (SYBR/PI), acrosome membrane integrity (PNA/FITC), DNA damage (TUNEL) and binding capacity of exogenous DNA (Nick Translation) in bull sperm treated with SLO. Subsequently, there was assessment of embryonic development and the efficiency in generating transgenic embryos with enhanced expression of the gene for green fluorescent protein (EGFP). Results indicate that SLO efficiently permeabilizes the plasma and acrosome membranes of bull spermatozoa and increases binding of exogenous DNA mostly to the post-acrosomal region and tail without greatly affecting the integrity of the DNA. Furthermore, treatment of bull spermatozoa with SLO prior to the injection of oocytes by ICSI-SMGT significantly increased the rate of embryo expression of the EGFP gene. Future experiments are still needed to determine the effect of this treatment on the development and transgene expression in fetuses and animals produced by ICSI-SMGT.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Student of Doctoral Program in Sciences in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Federico Pereyra-Bonnet
- Basic Science and Experimental Medicine Institute, University Institute, Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Daniel Salamone
- Laboratory of Animal Biotechnology, Faculty of Agricultural Sciences, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Puerta Suárez J, du Plessis SS, Cardona Maya WD. Spermatozoa: A Historical Perspective. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:182-190. [PMID: 29935062 PMCID: PMC6018180 DOI: 10.22074/ijfs.2018.5316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022]
Abstract
The 100,000th scientific article on the subject of spermatozoa was recently published. Numerous studies evaluated the
characteristics of this important cell that led to tremendous discoveries. Since its first observation and description in
1677, many important characteristics have been described regarding this highly fascinating gamete. In this review,
we intend to provide a historical account of the numerous milestones and breakthroughs achieved related to sperma-
tozoa. We conducted a review of the literature by selecting the most important subjects with regards to spermatozoa.
Since their discovery by van Leeuwenhoek, spermatozoa have been studied by scientists to better understand their
physiology and process of interaction with their female counterpart, the oocyte, in order to treat and resolve infertility
problems. Three centuries after van Leeuwenhoek’s discovery, the 100,000th article about these cells was published. It
is encouraging that sperm research reached this landmark, but at the same time it is clear that further research on male
reproductive physiology and spermatozoa is required to shed more light on their function and pathology in order to
reduce the number of unexplained infertility cases.
Collapse
Affiliation(s)
- Jenniffer Puerta Suárez
- Reproduction Group, Department of Microbiology and Parasitology, Medical School, University of Antioquia, Antioquia, Colombia
| | - Stefan S du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Walter D Cardona Maya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa. Electronic Address:
| |
Collapse
|
8
|
Park MH, Kim MS, Yun JI, Choi JH, Lee E, Lee ST. Integrin Heterodimers Expressed on the Surface of Porcine Spermatogonial Stem Cells. DNA Cell Biol 2018; 37:253-263. [DOI: 10.1089/dna.2017.4035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Min Hee Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
9
|
Improved exogenous DNA uptake in bovine spermatozoa and gene expression in embryos using membrane destabilizing agents in ICSI-SMGT. ZYGOTE 2018; 26:104-109. [PMID: 29334034 DOI: 10.1017/s0967199417000727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sperm-mediated gene transfer (SMGT) is a simple, fast, and economical biotechnological tool for producing transgenic animals. However, transgene expression with this technique in bovine embryos is still inefficient due to low uptake and binding of exogenous DNA in spermatozoa. The present study evaluated the effects of sperm membrane destabilization on the binding capacity, location and quantity of bound exogenous DNA in cryopreserved bovine spermatozoa using Triton X-100 (TX-100), lysolecithin (LL) and sodium hydroxide (NaOH). Effects of these treatments were also evaluated by intracytoplasmic sperm injection (ICSI)-SMGT. Results showed that all treatments bound exogenous DNA to spermatozoa including the control. Spermatozoa treated with different membrane destabilizing agents bound the exogenous DNA throughout the head and tail of spermatozoa, compared with the control, in which binding occurred mainly in the post-acrosomal region and tail. The amount of exogenous DNA bound to spermatozoa was much higher for the different sperm treatments than the control (P < 0.05), most likely due to the damage induced by these treatments to the plasma and acrosomal membranes. Exogenous gene expression in embryos was also improved by these treatments. These results demonstrated that sperm membrane destabilization could be a novel strategy in bovine SMGT protocols for the generation of transgenic embryos by ICSI.
Collapse
|
10
|
Munk M, Ladeira LO, Carvalho BC, Camargo LSA, Raposo NRB, Serapião RV, Quintão CCR, Silva SR, Soares JS, Jorio A, Brandão HM. Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes. Sci Rep 2016; 6:33588. [PMID: 27642034 PMCID: PMC5027538 DOI: 10.1038/srep33588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
The pellucid zone (PZ) is a protective embryonic cells barrier against chemical, physical or biological substances. This put, usual transfection methods are not efficient for mammal oocytes and embryos as they are exclusively for somatic cells. Carbon nanotubes have emerged as a new method for gene delivery, and they can be an alternative for embryos transfection, however its ability to cross the PZ and mediated gene transfer is unknown. Our data confirm that multiwall carbon nanotubes (MWNTs) can cross the PZ and delivery of pDNA into in vitro-fertilized bovine embryos. The degeneration rate and the expression of genes associated to cell viability were not affected in embryos exposed to MWNTs. Those embryos, however, had lower cell number and higher apoptotic cell index, but this did not impair the embryonic development. This study shows the potential utility of the MWNT for the development of new method for delivery of DNA into bovine embryos.
Collapse
Affiliation(s)
- Michele Munk
- Department of Biology, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Brazil
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Bruno C Carvalho
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| | - Luiz S A Camargo
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| | - Nádia R B Raposo
- Department of Biology, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Brazil.,Center of Research and Innovation in Health Sciences (NUPICS), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Raquel V Serapião
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| | - Carolina C R Quintão
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| | - Saulo R Silva
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| | - Jaqueline S Soares
- Department of Physics, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Ado Jorio
- Department of Physics, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Humberto M Brandão
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle (CNPGL), 36038-330 Juiz de Fora, Brazil
| |
Collapse
|
11
|
De Giorgi M, Pelikant-Malecka I, Sielicka A, Slominska EM, Giovannoni R, Cinti A, Cerrito MG, Lavitrano M, Smolenski RT. Functional analysis of expression of human ecto-nucleoside triphosphate diphosphohydrolase-1 and/or ecto-5'-nucleotidase in pig endothelial cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:313-8. [PMID: 24940685 DOI: 10.1080/15257770.2014.896466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenine nucleosides and nucleotides are important signaling molecules involved in control of key mechanisms of xenotransplant rejection. Extracellular pathway that converts ATP and ADP to AMP, and AMP to adenosine mainly mediated by ecto-nucleoside triphosphate diphosphohydrolase 1, (ENTPD1 or CD39) and ecto-5'-nucleotidase (E5NT or CD73) respectively, is considered as important target for xenograft protection. To clarify feasibility of combined expression of human ENTPD1 and E5NT and to study its functional effect we transfected pig endothelial cell line (PIEC) with both genes together. To do this we have produced a dicistronic construct bearing F2A sequence in frame between human E5NT and human ENTPD1 coding sequences. PIEC cells were mock-transfected as transfection control or transfected with plasmids encoding human ENTPD1 or human E5NT. PIEC cells were exposed to 50 μM ATP or 50 μM ADP or 50 μM AMP. Conversion of extracellular substrates into products (ATP/ADP/AMP/adenosine) was measured by HPLC in the media collected at specific time intervals. Following addition of AMP, production of adenosine in the medium of E5NT/ENTPD1- and E5NT- transfected cells increased to 14.2±1.1 and 24.5±3.4 μM respectively while it remained below 1 μM in controls and in ENTPD1-transfected cells. A marked increase of adenosine formation from ADP or ATP was observed only in E5NT/ENTPD1-transfected cells (11.7±0.1 and 5.7±2.2 μM respectively) but not in any other condition studied. This study indicates feasibility and functionality of combined expression of human E5NT and ENTPD1 in pig endothelial cells using F2A sequence bearing construct.
Collapse
Affiliation(s)
- M De Giorgi
- a Department of Surgery and Translational Medicine , University of Milano-Bicocca , Milano , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan AWS. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2014; 54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.
Collapse
|
13
|
Affiliation(s)
- Heriberto Rodríguez-Martínez
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Fernando Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| |
Collapse
|