1
|
García Bohórquez B, Aller E, Rodríguez Muñoz A, Jaijo T, García García G, Millán JM. Updating the Genetic Landscape of Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:645600. [PMID: 34327195 PMCID: PMC8315279 DOI: 10.3389/fcell.2021.645600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are a group of diseases characterized by the loss or dysfunction of photoreceptors and a high genetic and clinical heterogeneity. Currently, over 270 genes have been associated with IRD which makes genetic diagnosis very difficult. The recent advent of next generation sequencing has greatly facilitated the diagnostic process, enabling to provide the patients with accurate genetic counseling in some cases. We studied 92 patients who were clinically diagnosed with IRD with two different custom panels. In total, we resolved 53 patients (57.6%); in 12 patients (13%), we found only one mutation in a gene with a known autosomal recessive pattern of inheritance; and 27 patients (29.3%) remained unsolved. We identified 120 pathogenic or likely pathogenic variants; 30 of them were novel. Among the cone-rod dystrophy patients, ABCA4 was the most common mutated gene, meanwhile, USH2A was the most prevalent among the retinitis pigmentosa patients. Interestingly, 10 families carried pathogenic variants in more than one IRD gene, and we identified two deep-intronic variants previously described as pathogenic in ABCA4 and CEP290. In conclusion, the IRD study through custom panel sequencing demonstrates its efficacy for genetic diagnosis, as well as the importance of including deep-intronic regions in their design. This genetic diagnosis will allow patients to make accurate reproductive decisions, enroll in gene-based clinical trials, and benefit from future gene-based treatments.
Collapse
Affiliation(s)
- Belén García Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Ana Rodríguez Muñoz
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
- Unit of Genetics, University Hospital La Fe, Valencia, Spain
| | - Gema García García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- CIBER of Rare Diseases, Madrid, Spain
| |
Collapse
|
2
|
Wang T, Chen Q, Yao X, Kuang L, Gan R, Wang J, Yan X. New compound heterozygous CYP4V2 mutations in bietti crystalline corneoretinal dystrophy. Gene 2021; 790:145698. [PMID: 33964374 DOI: 10.1016/j.gene.2021.145698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal dystrophy which is caused by the mutations of CYP4V2, usually progressing to legal blindness by the 5th or 6th decade of life. Here we identified CYP4V2 compound heterozygous mutations in two female siblings with BCD without subjective symptoms. After 381 pathogenic genes related to retinal diseases were screened by targeted sequence capture array techniques and confirmed by Sanger sequencing, two compound heterozygous mutations in CYP4V2 were found. One was missense mutation c.1198C>T (p.R400C) and the other was frameshift mutation c.802-8_810delinsGC (p.V268_E329del). Optical coherence tomography (OCT) showed that the ellipsoid zone was absent in the macular regions and electroretinogram (ERG) revealed poor cone and rod responses. Compound heterozygous mutations in CYP4V2 are related to the BCD. Our study expands our knowledge of heterogenic phenotypes and genotypes through genetic diagnosis of the BCD patients.
Collapse
Affiliation(s)
- Ting Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Qingshan Chen
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Xue Yao
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Longhao Kuang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Run Gan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Jiantao Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China
| | - Xiaohe Yan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China; School of Optometry, Shenzhen University, Shenzhen 518040, China.
| |
Collapse
|
3
|
Khan M, Cornelis SS, Khan MI, Elmelik D, Manders E, Bakker S, Derks R, Neveling K, van de Vorst M, Gilissen C, Meunier I, Defoort S, Puech B, Devos A, Schulz HL, Stöhr H, Grassmann F, Weber BHF, Dhaenens CM, Cremers FPM. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum Mutat 2019; 40:1749-1759. [PMID: 31212395 DOI: 10.1002/humu.23787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Duaa Elmelik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eline Manders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sem Bakker
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier, INSERM, Université de Montpellier, Montpellier, France
| | - Sabine Defoort
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | - Bernard Puech
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | - Aurore Devos
- University of Lille, INSERM UMR-S1172, CHU Lille, Biochemistry and Molecular Biology Department, UF Genopathies, Lille, France
| | - Heidi L Schulz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Claire-Marie Dhaenens
- University of Lille, INSERM UMR-S1172, CHU Lille, Biochemistry and Molecular Biology Department, UF Genopathies, Lille, France
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Tao Y, Li C, Yao A, Qu Y, Qin L, Xiong Z, Zhang J, Wang W. Intranasal administration of erythropoietin rescues the photoreceptors in degenerative retina: a noninvasive method to deliver drugs to the eye. Drug Deliv 2019; 26:78-88. [PMID: 30744451 PMCID: PMC6374977 DOI: 10.1080/10717544.2018.1556361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Inherited retinopathies typically lead to photoreceptor loss and severe visual impairments in the subjects. Intranasal administration is an efficient approach to deliver therapeutic agents to the targeted tissue. The present study is designed to deliver the erythropoietin (EPO) into the N-methyl-N-nitrosourea (MNU) induced mice, a pharmacological retinopathy model via intranasal or intravenous route. The mice were then subjected to bioavailability assay and therapeutic effects evaluation. Our results showed that the intranasal delivery of EPO is effective to alleviate the morphological disruptions in the MNU induced mice. The intranasal delivery of EPO also ameliorated the visual impairments in the MNU induced mice. Immunostaining experiment showed that both the M-cone and S-cone populations in the degenerative retinas are rescued by the intranasal delivery of EPO. In particular, the M-cone photoreceptors in dorsal-temporal (DT) quadrant and the S-cone photoreceptors in ventral-nasal (VN) quadrant were preferentially preserved by the intranasal delivery of EPO. Mechanism studies showed that the intranasal delivery of EPO could the modulate apoptosis and restrict oxidation in the degenerative retina. Compared with intravenous delivery, the intranasal delivery led to the significantly higher EPO concentration in the retina. The intranasal delivery resulted in more potent protection and had less erythropoiesis-stimulating activity than the intravenous delivery. Our results suggest that the intranasal administration is a noninvasive and efficient approach to deliver EPO into the retinas. These findings lay the groundwork for further intranasal administration of EPO in ophthalmological practice.
Collapse
Affiliation(s)
- Ye Tao
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China.,b Department of Physiology, Basic Medical College , Zhengzhou University , Zhengzhou , PR China
| | - Chong Li
- c Department of Neurosurgery , Chinese PLA General Hospital , Beijing , PR China
| | - Anhui Yao
- c Department of Neurosurgery , Chinese PLA General Hospital , Beijing , PR China
| | - Yingxin Qu
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China
| | - Limin Qin
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China
| | - Zuojun Xiong
- d Department of Neurosurgery , Central Hospital of Wuhan Tongji Medical College Huazhong University of science and technology , Wu Hang , PR China
| | - Jianbin Zhang
- e Department of Occupational and Environmental Health Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment School of Public Health , Fourth Military Medical University , Xi'an , China
| | - Weiwen Wang
- f Department of Neurosurgery and Institute for Functional Brain Disorders , Tangdu Hospital Fourth Military Medical University , Xi'an , PR China
| |
Collapse
|
5
|
Martin-Merida I, Avila-Fernandez A, Del Pozo-Valero M, Blanco-Kelly F, Zurita O, Perez-Carro R, Aguilera-Garcia D, Riveiro-Alvarez R, Arteche A, Trujillo-Tiebas MJ, Tahsin-Swafiri S, Rodriguez-Pinilla E, Lorda-Sanchez I, Garcia-Sandoval B, Corton M, Ayuso C. Genomic Landscape of Sporadic Retinitis Pigmentosa: Findings from 877 Spanish Cases. Ophthalmology 2019; 126:1181-1188. [PMID: 30902645 DOI: 10.1016/j.ophtha.2019.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE We aimed to unravel the molecular basis of sporadic retinitis pigmentosa (sRP) in the largest cohort reported to date. DESIGN Case series. PARTICIPANTS A cohort of 877 unrelated Spanish sporadic cases with a clinical diagnosis of retinitis pigmentosa (RP) and negative family history. METHODS The cohort was studied by classic genotyping or targeted next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) and array-based comparative genomic hybridization were performed to confirm copy number variations detected by NGS. Quantitative fluorescent polymerase chain reaction was assessed in sRP cases carrying de novo variants to confirm paternity. MAIN OUTCOME MEASURES The study of the sRP cohort showed a high proportion of causal autosomal dominant (AD) and X-linked (XL) variants, most of them being de novo. RESULTS Causative variants were identified in 38% of the patients studied, segregating recessively in 84.5% of the solved cases. Biallelic variants detected in only 6 different autosomal recessive genes explained 50% of the cases characterized. Causal AD and XL variants were found in 7.6% and 7.9% of cases, respectively. Remarkably, 20 de novo variants were confirmed after trio analysis, explaining 6% of the cases. In addition, 17% of the solved sRP cases were reclassified to a different retinopathy phenotype. CONCLUSIONS This study highlights the clinical utility of NGS testing for sRP cases, expands the mutational spectrum, and provides accurate prevalence of mutated genes. Our findings evidence the underestimated role of de novo variants in the etiology of RP, emphasizing the importance of segregation analysis as well as comprehensive screening of genes carrying XL and AD variants in sporadic cases. Such in-depth study is essential for accurate family counseling and future enrollment in gene therapy-based treatments.
Collapse
Affiliation(s)
- Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Olga Zurita
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Raquel Perez-Carro
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Domingo Aguilera-Garcia
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ana Arteche
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Maria Jose Trujillo-Tiebas
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Saoud Tahsin-Swafiri
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Elvira Rodriguez-Pinilla
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Khan M, Fadaie Z, Cornelis SS, Cremers FPM, Roosing S. Identification and Analysis of Genes Associated with Inherited Retinal Diseases. Methods Mol Biol 2019; 1834:3-27. [PMID: 30324433 DOI: 10.1007/978-1-4939-8669-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Zobor D, Zobor G, Hipp S, Baumann B, Weisschuh N, Biskup S, Sliesoraityte I, Zrenner E, Kohl S. Phenotype Variations Caused by Mutations in theRP1L1Gene in a Large Mainly German Cohort. ACTA ACUST UNITED AC 2018; 59:3041-3052. [DOI: 10.1167/iovs.18-24033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gergely Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Stephanie Hipp
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Saskia Biskup
- Praxis für Humangenetik Tübingen & CeGaT GmbH, Tübingen, Tübingen, Germany
| | - Ieva Sliesoraityte
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
- Institut de La Vision, INSERM Paris, France
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Targeted next generation sequencing identified novel mutations in RPGRIP1 associated with both retinitis pigmentosa and Leber's congenital amaurosis in unrelated Chinese patients. Oncotarget 2018; 8:35176-35183. [PMID: 28456785 PMCID: PMC5471044 DOI: 10.18632/oncotarget.17052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
As the most common inherited retinal degenerations, retinitis pigmentosa (RP) is clinically and genetically heterogeneous. Some of the RP genes are also associated with other retinal diseases, such as LCA (Leber's congenital amaurosis) and CORD (cone-rod dystrophy). Here, in our molecular diagnosis of 99 Chinese RP patients using targeted gene capture sequencing, three probands were found to carry mutations of RPGRIP1, which was known to be associated with pathogenesis of LCA and CORD. By further clinical analysis, two probands were confirmed to be RP patients and one was confirmed to be LCA patient. These novel mutations were co-segregated with the disease phenotype in their families. Our result not only expands the mutational spectrum of the RPGRIP1 gene but also gives supports to clinical diagnosis and molecular treatment of RP patients.
Collapse
|
9
|
Tao Y, Ma Z, Liu B, Fang W, Qin L, Huang YF, Wang L, Gao Y. Hemin supports the survival of photoreceptors injured by N-Methyl-N-nitrosourea: The contributory role of neuroglobin in photoreceptor degeneration. Brain Res 2017; 1678:47-55. [PMID: 29038003 DOI: 10.1016/j.brainres.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023]
Abstract
Retina is a critical component of the central nerve system that is responsible for the conversion of light stimulus into electrical spikes. Retinitis pigmentosa (RP) comprises a heterogeneous group of inherited retinal dystrophies leading to blindness. We examined retinal neuroglobin (Ngb) expression in a pharmacologically induced RP animal model, the N-Methyl-N-nitrosourea (MNU) administered mice. The retinal Ngb expression in MNU administered mice attenuated following a time dependent manner, suggesting Ngb was involved in the photoreceptor degeneration. Conversely, the intravenous delivery of Hemin, a Ngb up-regulator, enhanced the Ngb expressions in the retinas of MNU administered mice. Optokinetic behavioral tests and Electroretinogram (ERG) examination suggested that the Hemin treatment could improve the visual function of MNU administered mice. The retinal morphology of the Hemin treated group was much more intact than the MNU group as evidenced by retinal sections and optical coherence tomography (OCT) examinations. Moreover, immunostaining experiments showed the cone photoreceptors in the MNU administered mice were also rescued by Hemin treatment. Furthermore, mechanism studies suggested the Hemin treatment not only alleviated the oxidative stress, but also rectified the apoptotic changes in the retinas of MNU administered mice. In conclusion, the intraperitoneally delivery of Hemin can enhance the Ngb expressions in the MNU administered retinas, thereby ameliorating the photoreceptor degeneration and associated visual impairments. These findings would shed light on the opportunity to develop Ngb into a therapeutic molecular against RP.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhao Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, 430014, PR China
| | - Bei Liu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei Fang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Limin Qin
- Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yi Fei Huang
- Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Lu Wang
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, 430014, PR China.
| | - Yanling Gao
- Department of Human Resource Research Center, 371 Hospital of Chinese PLA, Xinxiang 453000, PR China.
| |
Collapse
|
10
|
Coppieters F, Todeschini AL, Fujimaki T, Baert A, De Bruyne M, Van Cauwenbergh C, Verdin H, Bauwens M, Ongenaert M, Kondo M, Meire F, Murakami A, Veitia RA, Leroy BP, De Baere E. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1. Hum Mutat 2015; 36:1188-96. [PMID: 26316326 PMCID: PMC5054839 DOI: 10.1002/humu.22899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe autosomal‐recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9‐associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5′UTR variant, c.‐70A>T. Moreover, an adjacent 5′UTR variant, c.‐69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5′UTR variants resulted in decreased NMNAT1 mRNA abundance in patients’ lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE‐1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu‐rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1‐associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat‐mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness.
Collapse
Affiliation(s)
| | | | - Takuro Fujimaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Annelot Baert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | | | - Hannah Verdin
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Maté Ongenaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Françoise Meire
- Department of Ophthalmology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Reiner A Veitia
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Marfany G, Gonzàlez-Duarte R. Clinical applications of high-throughput genetic diagnosis in inherited retinal dystrophies: Present challenges and future directions. World J Med Genet 2015; 5:14-22. [DOI: 10.5496/wjmg.v5.i2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
Collapse
|
13
|
Pozo MGD, Méndez-Vidal C, Bravo-Gil N, Vela-Boza A, Dopazo J, Borrego S, Antiñolo G. Exome sequencing reveals novel and recurrent mutations with clinical significance in inherited retinal dystrophies. PLoS One 2014; 9:e116176. [PMID: 25544989 PMCID: PMC4278866 DOI: 10.1371/journal.pone.0116176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022] Open
Abstract
This study aimed to identify the underlying molecular genetic cause in four Spanish families clinically diagnosed of Retinitis Pigmentosa (RP), comprising one autosomal dominant RP (adRP), two autosomal recessive RP (arRP) and one with two possible modes of inheritance: arRP or X-Linked RP (XLRP). We performed whole exome sequencing (WES) using NimbleGen SeqCap EZ Exome V3 sample preparation kit and SOLID 5500xl platform. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation and the absence in local control population. This strategy allowed the detection of: (i) one novel heterozygous splice-site deletion in RHO, c.937-2_944del, (ii) one rare homozygous mutation in C2orf71, c.1795T>C; p.Cys599Arg, not previously associated with the disease, (iii) two heterozygous null mutations in ABCA4, c.2041C>T; p.R681* and c.6088C>T; p.R2030*, and (iv) one mutation, c.2405-2406delAG; p.Glu802Glyfs*31 in the ORF15 of RPGR. The molecular findings for RHO and C2orf71 confirmed the initial diagnosis of adRP and arRP, respectively, while patients with the two ABCA4 mutations, both previously associated with Stargardt disease, presented symptoms of RP with early macular involvement. Finally, the X-Linked inheritance was confirmed for the family with the RPGR mutation. This latter finding allowed the inclusion of carrier sisters in our preimplantational genetic diagnosis program.
Collapse
Affiliation(s)
- María González-del Pozo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Nereida Bravo-Gil
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Alicia Vela-Boza
- Genomics and Bioinformatics Platform of Andalusia (GBPA), Seville, Spain
| | - Joaquin Dopazo
- Genomics and Bioinformatics Platform of Andalusia (GBPA), Seville, Spain
- Department of Bioinformatics, Prince Felipe Research Centre (CIPF), Valencia, Spain
- Functional Genomics Node (INB), Prince Felipe Research Centre (CIPF), Valencia, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
- Genomics and Bioinformatics Platform of Andalusia (GBPA), Seville, Spain
- * E-mail:
| |
Collapse
|
14
|
Wolf NI, Salomons GS, Rodenburg RJ, Pouwels PJW, Schieving JH, Derks TGJ, Fock JM, Rump P, van Beek DM, van der Knaap MS, Waisfisz Q. Mutations in RARS cause hypomyelination. Ann Neurol 2014; 76:134-9. [PMID: 24777941 DOI: 10.1002/ana.24167] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 12/11/2022]
Abstract
Hypomyelinating disorders of the central nervous system are still a diagnostic challenge, as many patients remain without genetic diagnosis. Using magnetic resonance imaging (MRI) pattern recognition and whole exome sequencing, we could ascertain compound heterozygous mutations in RARS in 4 patients with hypomyelination. Clinical features included severe spasticity and nystagmus. RARS encodes the cytoplasmic arginyl-tRNA synthetase, an enzyme essential for RNA translation. This protein is among the subunits of the multisynthetase complex, which emerges as a key player in myelination.
Collapse
Affiliation(s)
- Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam, Amsterdam
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|