1
|
Schettino M, Tarmati V, Castellano P, Gigli V, Carnevali L, Cabib S, Ottaviani C, Orsini C. Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies. Neurobiol Stress 2024; 31:100647. [PMID: 38962695 PMCID: PMC11219954 DOI: 10.1016/j.ynstr.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects. In rodents, acute stress reduced reward responsiveness (g = -1.43) and valuation (g = -0.32), while amplifying reward learning (g = 1.17). In humans, acute stress had marginal effects on valuation (g = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints. Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.
Collapse
Affiliation(s)
- Martino Schettino
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valeria Tarmati
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Paola Castellano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valeria Gigli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simona Cabib
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
2
|
Mercante F, Micioni Di Bonaventura E, Pucci M, Botticelli L, Cifani C, D'Addario C, Micioni Di Bonaventura MV. Repeated binge-like eating episodes in female rats alter adenosine A 2A and dopamine D2 receptor genes regulation in the brain reward system. Int J Eat Disord 2024; 57:1433-1446. [PMID: 38650547 DOI: 10.1002/eat.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
3
|
Rodríguez-Rangel DS, Estrada-Camarena E, López-Rubalcava C. Stress hyper-reactivity increases vulnerability to developing binge-type eating and associated anxiety-like behavior; comparison between Wistar-Kyoto and Sprague-Dawley rats. Front Nutr 2024; 11:1368111. [PMID: 38638297 PMCID: PMC11024955 DOI: 10.3389/fnut.2024.1368111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Binge eating disorder (BED) is a widespread eating disorder that primarily affects women worldwide, and it is characterized by the presence of binge eating episodes and the absence of any compensatory behavior to prevent weight gain. BED presents elevated comorbidity with other psychiatric disorders, such as anxiety, and it has been suggested that stress sensibility could be a vulnerability factor for the development of BED and the associated anxiety comorbidity. In this study, we aim to investigate whether the Wistar-Kyoto rat strain (WKY), which has a stress hyper-reactive phenotype, could develop both binge-type eating and anxiety-like behaviors simultaneously. We also aim to compare its vulnerability to developing both behaviors with the Sprague Dawley rat strain (SD), a rat strain commonly used in binge-eating models. Methods WKY and SD rats were subjected to the model of intermittent access to palatable food (sucrose solution 30% or shortening) without calorie restriction or stress exposure. We evaluated and compared the development of binge-type eating behavior, anxiety-like behavior, and serum corticosterone variation as an index of the stress response in both rat strains. Results WKY rats presented a higher percentage of binge-type eaters and required less time to develop binge-type eating behavior than SD rats. The WKY eating pattern emulated a binge-eating episode regardless of the palatable food. Although the development of sucrose binge-type eating was similar between strains, WKY developed more easily the shortening binge-type eating than SD and was more susceptible to developing anxiety-like behavior. Additionally, sucrose binge eating seems to differentially affect both strains' hypothalamic-pituitary-adrenal (HPA) axis response to stress since it facilitated its response in SD and blunted it in WKY. Discussion Our results show that high-stress sensitive phenotype is a common vulnerability factor for the development of binge-type eating and anxiety-like behavior. Regardless of the macronutrient composition of the palatable food, WKY is susceptible to developing a binge-type eating behavior and is more susceptible than SD to developing anxiety-like behavior simultaneously. In conclusion, results showed that a hyper-reactive stress phenotype predisposes the development of binge-type eating behavior and anxiety-like behavior in the absence of calorie restriction and stress exposure.
Collapse
Affiliation(s)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados (CINVESTAV-Sede Sur), Mexico City, Mexico
| |
Collapse
|
4
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Cifani C, Alboni S, Mucci A, Benatti C, Botticelli L, Brunello N, Micioni Di Bonaventura MV, Righi V. Serum metabolic signature of binge-like palatable food consumption in female rats by nuclear magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4469. [PMID: 33458898 DOI: 10.1002/nbm.4469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Maladaptive eating behavior is a growing public health problem and compulsively eating excessive food in a short time, or binge eating, is a key symptom of many eating disorders. In order to investigate the binge-like eating behavior in female rats, induced by intermittent food restrictions/refeeding and frustration stress, we analyzed for the first time the metabolic profile obtained from serum of rats, through nuclear magnetic resonance (NMR) spectroscopy. In this experimental protocol, rats were exposed to chow food restricting/refeeding and frustration stress manipulation. This stress procedure consists of 15 min exposure to the odor and sight of a familiar chocolate paste, without access to it, just before offering the palatable food. In this model, a "binge-eating episode" was considered the significantly higher palatable food consumption within 2 h in restricted and stressed rats (R + S) than in the other three experimental groups: rats with no food restriction and no stress (NR + NS), only stressed rats (NR + S) or only restricted rats (R + NS). Serum samples from these four different rat groups were collected. The statistical analysis of the 1 H NMR spectral profiles of the four sets of samples pointed to O- and N-acetyl glycoproteins as the main biomarkers for the discrimination of restriction effects. Other metabolites, such as threonine, glycine, glutamine, acetate, pyruvate and lactate, showed trends that may be useful to understand metabolic pathways involved in eating disorders. This study suggested that NMR-based metabolomics is a suitable approach to detect biomarkers related to binge-eating behavior.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Valeria Righi
- Department for the Quality of Life Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
6
|
Cifani C, Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Pavletić P, Piergentili A, Quaglia W, Bonifazi A, Schepmann D, Wünsch B, Vistoli G, Micioni Di Bonaventura MV. Novel Highly Potent and Selective Sigma1 Receptor Antagonists Effectively Block the Binge Eating Episode in Female Rats. ACS Chem Neurosci 2020; 11:3107-3116. [PMID: 32886484 PMCID: PMC8011929 DOI: 10.1021/acschemneuro.0c00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
In
this paper, the benzo-cracking approach was applied to the potent
sigma1 (σ1) receptor antagonist 1 to
afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase
in the distance between the two hydrophobic structural elements that
flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared
and studied. Compounds 2 and 3 showed affinity
values at the σ1 receptor significantly higher than
that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid
receptor subtypes, as well as over the dopamine transporter. Docking
results supported the structure–activity relationship studies.
Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical
model of binge eating, was able to counteract the overeating of palatable
food only in binging rats, without affecting palatable food intake
in the control group and anxiety-like and depression-related behaviors
in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported
the σ1 receptor as a promising target for the management
of eating disorders.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | | | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Bonifazi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | | |
Collapse
|
7
|
Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020; 45:1931-1941. [PMID: 32353860 PMCID: PMC7609309 DOI: 10.1038/s41386-020-0686-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.
Collapse
|
8
|
Micioni Di Bonaventura MV, Micioni Di Bonaventura E, Polidori C, Cifani C. Preclinical Models of Stress and Environmental Influences on Binge Eating. BINGE EATING 2020:85-101. [DOI: 10.1007/978-3-030-43562-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Lambertucci C, Volpini R, Micioni Di Bonaventura E, Gaetani S, Maccarrone M, D'Addario C, Cifani C. Regulation of adenosine A 2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J Psychopharmacol 2019; 33:1550-1561. [PMID: 31161847 DOI: 10.1177/0269881119845798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. METHODS AND AIMS Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. RESULTS Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. CONCLUSION We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.
Collapse
Affiliation(s)
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico, University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
10
|
Pucci M, Micioni Di Bonaventura MV, Zaplatic E, Bellia F, Maccarrone M, Cifani C, D'Addario C. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int J Eat Disord 2019; 52:51-60. [PMID: 30578649 DOI: 10.1002/eat.22989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Binge-eating episodes are recurrent and are defining features of several eating disorders. Thus binge-eating episodes might influence eating disorder development of which exact underlying mechanisms are still largely unknown. METHODS Here we focused on the transcriptional regulation of the endocannabinoid system, a potent regulator of feeding behavior, in relevant rat brain regions, using a rat model in which a history of intermittent food restriction and a frustration stress induce binge-like palatable food consumption. RESULTS We observed a selective down-regulation of fatty acid amide hydrolase (faah) gene expression in the hypothalamus of rats showing the binge-eating behavior with a consistent reduction in histone 3 acetylation at lysine 4 of the gene promoter. No relevant changes were detected for any other endocannabinoid system components in any brain regions under study, as well as for the other epigenetic mechanisms investigated (DNA methylation and histone 3 lysine 27 methylation) at the faah gene promoter. DISCUSSION Our findings suggest that faah transcriptional regulation is a potential biomarker of binge-eating episodes, with a relevant role in the homeostatic regulation of food intake.
Collapse
Affiliation(s)
- Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Micioni Di Bonaventura MV, Micioni Di Bonaventura E, Cifani C, Polidori C. N/OFQ-NOP System in Food Intake. Handb Exp Pharmacol 2019; 254:279-295. [PMID: 31073870 DOI: 10.1007/164_2019_212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While lifestyle modifications should be the first-line actions in preventing and treating obesity and eating disorders, pharmacotherapy also provides a necessary tool for the management of these diseases.However, given the limitations of current anti-obesity drugs, innovative treatments that improve efficacy and safety are needed.Since the discovery that the activation of the Nociceptin/Orphanin (N/OFQ) FQ peptide (NOP) receptor by N/OFQ induces an increase of food intake in laboratory animals, and the finding that this effect can be blocked by NOP antagonists, many NOP agonists and antagonists have been synthesized and tested in vitro and in vivo for their potential regulation of feeding behavior. Promising results seem to suggest that the N/OFQergic system may be a potential therapeutic target for the neural control of feeding behavior and related pathologies, especially in binge-like eating behavior.
Collapse
Affiliation(s)
| | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC, Italy.
| | - Carlo Polidori
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC, Italy
| |
Collapse
|
12
|
Di Bonaventura MVM, Ubaldi M, Giusepponi ME, Rice KC, Massi M, Ciccocioppo R, Cifani C. Hypothalamic CRF1 receptor mechanisms are not sufficient to account for binge-like palatable food consumption in female rats. Int J Eat Disord 2017; 50:1194-1204. [PMID: 28833350 PMCID: PMC5772704 DOI: 10.1002/eat.22767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The present study evaluated the effect of systemic injection of the CRF1 receptor antagonist R121919, the corticosterone synthesis inhibitor metyrapone and central amygdala (CeA) injections of the nonselective CRF antagonist D-Phe-CRF(12-41) in rats in which binge eating was evoked by stress and cycles of food restriction. METHOD Female rats were subjected or not to repeated cycles of regular chow food restriction/ad libitum feeding during which they were also given limited access (2 h) to palatable food. On the test day, rats were either exposed or not to the sight of the palatable food for 15 min without allowing access, before assessing food consumption. RESULTS Systemic injections of R121919, but not of the metyrapone, blocked binge-like eating behavior. Restricted and stressed rats showed up-regulation of crh1 receptor mRNA signal in the bed nucleus of the stria terminalis and CeA but not in basolateral amygdala (BLA) or in the paraventricular nucleus. Injection D-Phe-CRF(12-41) in CeA but not in the BLA-blocked binge-like eating behavior. DISCUSSION These findings demonstrate that extra-hypothalamic CRF1 receptors, rather than those involved in endocrine functions, are involved in binge eating and the crucial role of CRF receptors in CeA. CRF1 receptor antagonism may represent a novel pharmacological treatment for binge-related eating disorders.
Collapse
Affiliation(s)
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | | | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892-3373, United States
| | - Maurizio Massi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy,NIDA/NIH, Intramural Research Program, 21224 Baltimore (MD), USA
| |
Collapse
|
13
|
Di Bonaventura MVM, Lutz TA, Romano A, Pucci M, Geary N, Asarian L, Cifani C. Estrogenic suppression of binge-like eating elicited by cyclic food restriction and frustrative-nonreward stress in female rats. Int J Eat Disord 2017; 50:624-635. [PMID: 28230907 PMCID: PMC5500915 DOI: 10.1002/eat.22687] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 01/18/2023]
Abstract
Because binge eating and emotional eating vary through the menstrual cycle in human females, we investigated cyclic changes in binge-like eating in female rats and their control by estrogens. Binge-like eating was elicited by three cycles of 4 days of food restriction and 4 days of free feeding followed by a single frustrative nonreward-stress episode (15 min visual and olfactory exposure to a familiar palatable food) immediately before presentation of the palatable food. Intact rats showed binge-like eating during the diestrous and proestrous phases of the ovarian cycle, but not during the estrous (periovulatory) phase. Ovariectomized (OVX) rats not treated with estradiol (E2) displayed binge-like eating, whereas E2-treated OVX rats did not. The procedure did not increase signs of anxiety in an open-field test. OVX rats not treated with E2 that were subjected to food restriction and sacrificed immediately after frustrative nonreward had increased numbers of cells expressing phosphorylated extracellular signal-regulated kinases (ERK) in the central nucleus of the amygdala (CeA), paraventricular nucleus of hypothalamus (PVN), and dorsal and ventral bed nuclei of the stria terminalis (BNST) compared with nonrestricted or E2-treated rats. These data suggest that this female rat model is appropriate for mechanistic studies of some aspects of menstrual-cycle effects on emotional and binge eating in human females, that anxiety is not a sufficient cause of binge-like eating, and that the PVN, CeA, and BNST may contribute to information processing underlying binge-like eating.
Collapse
Affiliation(s)
| | - Thomas A. Lutz
- Institute of Veterinary Physiology and Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Adele Romano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nori Geary
- Department of Psychiatry (Retired), Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Lori Asarian
- Institute of Veterinary Physiology and Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|