1
|
Razzaq A, Zafar MM, Li P, Qun G, Deng X, Ali A, Hafeez A, Irfan M, Liu A, Ren M, Shang H, Shi Y, Gong W, Yuan Y. Transformation and Overexpression of Primary Cell Wall Synthesis-Related Zinc Finger Gene Gh_A07G1537 to Improve Fiber Length in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:777794. [PMID: 34804108 PMCID: PMC8604042 DOI: 10.3389/fpls.2021.777794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
Molecular interventions have helped to explore the genes involved in fiber length, fiber strength, and other quality parameters with improved characteristics, particularly in cotton. The current study is an extension and functional validation of previous findings that Gh_A07G1537 influences fiber length in cotton using a chromosomal segment substitution line MBI7747 through RNA-seq data. The recombinant Gh_A07G1537 derived from the MBI7747 line was over-expressed in CCRI24, a genotype with a low profile of fiber quality parameters. Putative transformants were selected on MS medium containing hygromycin (25mg/ml), acclimatized, and shifted to a greenhouse for further growth and proliferation. Transgene integration was validated through PCR and Southern Blot analysis. Stable integration of the transgene (ΔGh_A07G1537) was validated by tracking its expression in different generations (T0, T1, and T2) of transformed cotton plants. It was found to be 2.97-, 2.86-, and 2.92-folds higher expression in T0, T1, and T2 plants, respectively, of transgenic compared with non-transgenic cotton plants. Fiber quality parameters were also observed to be improved in the engineered cotton line. Genetic modifications of Gh_A07G1537 support the improvement in fiber quality parameters and should be appreciated for the textile industry.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Ge Qun
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics, Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Irfan
- Department of Biological Sciences, Forman Christian College, A Chartered University, Lahore, Pakistan
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Sohrab SS. Development of Virus Resistance Transgenic Cotton Using Cotton Leaf Curl Virus Antisense ßC1 Gene. Methods Mol Biol 2019; 1902:293-305. [PMID: 30543080 DOI: 10.1007/978-1-4939-8952-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cotton (Gossypium hirsutum L.) is the most economically important crop in the world and produced 90% of the total natural cellulose fiber which is utilized to make cotton fabrics. The production of cotton is affected by many several diseases, and among them, viral disease, especially leaf curl, is the most destructive disease caused by a begomovirus transmitted by whiteflies vector. Plant biotechnology has provided an opportunity to develop transgenic plant with variable traits against biotic and abiotic stress such as resistance against pathogens, yield, quality, and salinity. Transgenic cotton (Gossypium hirsutum L., cv. Coker 312) plants were raised against leaf curl disease using bC1 gene in antisense orientation through Agrobacterium-mediated transformation somatic embryogenesis system. In this chapter, a standardized protocol will be given to raise virus resistance transgenic cotton.
Collapse
Affiliation(s)
- S S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Li H, Li K, Guo Y, Guo J, Miao K, Botella JR, Song CP, Miao Y. A transient transformation system for gene characterization in upland cotton ( Gossypium hirsutum). PLANT METHODS 2018; 14:50. [PMID: 29977323 PMCID: PMC6013946 DOI: 10.1186/s13007-018-0319-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genetically modified cotton accounts for 64% of the world's cotton growing area (22.3 million hectares). The genome sequencing of the diploid cotton progenitors Gossypium raimondii and Gossypium arboreum as well as the cultivated Gossypium hirsutum has provided a wealth of genetic information that could be exploited for crop improvement. Unfortunately, gene functional characterization in cotton is lagging behind other economically important crops due to the low efficiency, lengthiness and technical complexity of the available stable transformation methods. We present here a simple, fast and efficient method for the transient transformation of G. hirsutum that can be used for gene characterization studies. RESULTS We developed a transient transformation system for gene characterization in upland cotton. Using β-glucuronidase as a reporter for Agrobacterium-mediated transformation assays, we evaluated multiple transformation parameters such as Agrobacterium strain, bacterial density, length of co-cultivation, chemicals and surfactants, which can affect transformation efficiency. After the initial characterization, the Agrobacterium EHA105 strain was selected and a number of binary constructs used to perform gene characterization studies. 7-days-old cotton seedlings were co-cultivated with Agrobacterium and transient gene expression was observed 5 days after infection of the plants. Transcript levels of two different transgenes under the control of the cauliflower mosaic virus (CaMV) 35S promoter were quantified by real-time reverse transcription PCR (qRT-PCR) showing a 3-10 times increase over the levels observed in non-infected controls. The expression patterns driven by the promoters of two G. hirsutum genes as well as the subcellular localization of their corresponding proteins were studied using the new transient expression system and our observations were consistent with previously published results using Arabidopsis as a heterologous system. CONCLUSIONS The Agrobacterium-mediated transient transformation method is a fast and easy transient expression system enabling high transient expression and transformation efficiency in upland cotton seedlings. Our method can be used for gene functional studies such as promoter characterization and protein subcellular localization in cotton, obviating the need to perform such studies in a heterologous system such as Arabidopsis.
Collapse
Affiliation(s)
- Haipeng Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yutao Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kaiting Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Life Science, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Jose R. Botella
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD Australia
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| |
Collapse
|
4
|
Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. FRONTIERS IN PLANT SCIENCE 2015; 6:838. [PMID: 26583018 PMCID: PMC4628126 DOI: 10.3389/fpls.2015.00838] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 05/20/2023]
Abstract
Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification.
Collapse
Affiliation(s)
- Kamran S. Bajwa
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
- *Correspondence: Kamran S. Bajwa
| | - Ahmad A. Shahid
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Abdul Q. Rao
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Aftab Bashir
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Asia Aftab
- Plant Biotechnology, Nuclear Institute of Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Tayyab Husnain
- Plant Biotechnology Lab, Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| |
Collapse
|