1
|
Zhang Y, Zhang J, Fu Z. Role of autophagy in lung diseases and ageing. Eur Respir Rev 2022; 31:31/166/220134. [PMID: 36543345 PMCID: PMC9879344 DOI: 10.1183/16000617.0134-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
The lungs face ongoing chemical, mechanical, biological, immunological and xenobiotic stresses over a lifetime. Advancing age progressively impairs lung function. Autophagy is a "housekeeping" survival strategy involved in numerous physiological and pathological processes in all eukaryotic cells. Autophagic activity decreases with age in several species, whereas its basic activity extends throughout the lifespan of most animals. Dysregulation of autophagy has been proven to be closely related to the pathogenesis of several ageing-related pulmonary diseases. This review summarises the role of autophagy in the pathogenesis of pulmonary diseases associated with or occurring in the context of ageing, including acute lung injury, chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China,Corresponding author: Zhiling Fu ()
| |
Collapse
|
2
|
Zhang D, Chen Y, Xu X, Xiang H, Shi Y, Gao Y, Wang X, Jiang X, Li N, Pan J. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clin Exp Pharmacol Physiol 2019; 47:466-477. [PMID: 31675454 DOI: 10.1111/1440-1681.13207] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
Autophagy and cellular senescence are two critical responses of mammalian cells to stress and may have a direct relationship given that they respond to the same set of stimuli, including oxidative stress, DNA damage, and telomere shortening. Mesenchymal stem cells (MSCs) have emerged as reliable cell sources for stem cell transplantation and are currently being tested in numerous clinical trials. However, the effects of autophagy on MSC senescence and corresponding mechanisms have not been fully evaluated. Several studies demonstrated that autophagy level increases in aging MSCs and the downregulation of autophagy can delay MSC senescence, which is inconsistent with most studies that showed autophagy could play a protective role in stem cell senescence. To further study the relationship between autophagy and MSC senescence and explore the effects and mechanisms of premodulated autophagy on MSC senescence, we induced the up- or down-regulation of autophagy by using rapamycin (Rapa) or 3-methyladenine, respectively, before MSC senescence induced by D-galactose (D-gal). Results showed that pretreatment with Rapa for 24 hours remarkably alleviated MSC aging induced by D-gal and inhibited ROS generation. p-Jun N-terminal kinases (JNK) and p-38 expression were also clearly decreased in the Rapa group. Moreover, the protective effect of Rapa on MSC senescence can be abolished by enhancing the level of ROS, and p38 inhibitor can reverse the promoting effect of H2 O2 on MSC senescence. In summary, the present study indicates that autophagy plays a protective role in MSC senescence induced by D-gal, and ROS/JNK/p38 signalling plays an important mediating role in autophagy-delaying MSC senescence.
Collapse
Affiliation(s)
- Dayong Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yifan Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xianbin Xu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Haoyi Xiang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yizhan Shi
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Ying Gao
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xiaowen Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xuefan Jiang
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People 's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Na Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jianping Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| |
Collapse
|
3
|
Jiang S, Sun J, Mohammadtursun N, Hu Z, Li Q, Zhao Z, Zhang H, Dong J. Dual role of autophagy/mitophagy in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2019; 56:116-125. [DOI: 10.1016/j.pupt.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/18/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
|
4
|
Li C, Liu Y, Liu H. Expression of c-Myc and Beclin-1 in skin of rats after burn. Exp Ther Med 2018; 16:2917-2921. [PMID: 30233665 PMCID: PMC6143901 DOI: 10.3892/etm.2018.6582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the expression features of Beclin-1 and c-Myc in the skin burn of rats. A total of 48 Sprague-Dawley (SD) rats were randomly divided into the normal group (n=12), the 3-day burn group (n=12), the 5-day burn group (n=12) and the 7-day burn group (n=12). Except for the normal group, the rat models of burn were established in the other three groups, burn wounds were given routine dressing change, and rats were sacrificed at 3, 5 and 7 days after modeling to collect materials. Then, immunohistochemistry was applied to detect the expression of c-Myc and Beclin-1. The expression levels of c-Myc protein and Beclin-1 protein were measured via western blotting. The expression levels of c-Myc messenger ribonucleic acid (mRNA) and Beclin-1 mRNA were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In comparison with the normal group, three burn groups had significantly increased the expression of c-Myc and Beclin-1, and the differences were statistically significant (P<0.05). Beclin-1 expression in the 5-day burn group was obviously higher than those in the 3 and 7-day burn groups, and the differences were of statistical significance (P<0.05). The expression of c-Myc in the 7-day burn group was overtly higher than those in the 3 and 5-day burn groups, and the differences showed statistical significance (P<0.05). The expression of Beclin-1 and c-Myc in post-burn skin tissues were gradually increased, with the Beclin-1 expression level reaching the peak on the 5th day after burn, and the expression level of c-Myc was the highest on the 7th day after burn.
Collapse
Affiliation(s)
- Caihong Li
- Department of Burn and Plastic Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yuping Liu
- Department of Burn and Plastic Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Hongjuan Liu
- Department of Burn and Plastic Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
5
|
Pathogenesis of COPD 4 – Cell Death, Senescence, and Autophagy: Is There a Possibility of Developing New Drugs from the Standpoint of This Pathogenetic Mechanism? RESPIRATORY DISEASE SERIES: DIAGNOSTIC TOOLS AND DISEASE MANAGEMENTS 2017. [DOI: 10.1007/978-981-10-0839-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K, Nakayama K. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 2016; 54:397-406. [PMID: 27886850 DOI: 10.1016/j.resinv.2016.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/05/2016] [Accepted: 03/30/2016] [Indexed: 01/18/2023]
Abstract
Aging is associated with impairments in homeostasis. Although aging and senescence are not equivalent, the number of senescent cells increases with aging. Cellular senescence plays important roles in tissue repair or remodeling, as well as embryonic development. Autophagy is a process of lysosomal self-degradation that maintains a homeostatic balance between the synthesis, degradation, and recycling of cellular proteins. Autophagy diminishes with aging; additionally, accelerated aging can be attributed to reduced autophagy. Cellular senescence has been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease of accelerated lung aging, presumably by impairing cell repopulation and by aberrant cytokine secretion in the senescence-associated secretory phenotype. The possible participation of autophagy in the pathogenic sequence of COPD has been extensively explored. Although it has been reported that increased autophagy may induce epithelial cell death, an insufficient reserve of autophagy can induce cellular senescence in bronchial epithelial cells of COPD. Furthermore, advanced age is one of the most important risk factors for the development of idiopathic pulmonary fibrosis (IPF). Telomere shortening is found in blood leukocytes and alveolar epithelial cells from patients with IPF. Accelerated senescence of epithelial cells plays a role in IPF pathogenesis by perpetuating abnormal epithelial-mesenchymal interactions. Insufficient autophagy may be an underlying mechanism of accelerated epithelial cell senescence and myofibroblast differentiation in IPF. Herein, we review the molecular mechanisms of cellular senescence and autophagy and summarize the role of cellular senescence and autophagy in both COPD and IPF.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Naoki Takasaka
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Kenji Kobayashi
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
7
|
Zhu Y, He W, Gao X, Li B, Mei C, Xu R, Chen H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep 2015; 5:17730. [PMID: 26635117 PMCID: PMC4669414 DOI: 10.1038/srep17730] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023] Open
Abstract
Gefitinib (Gef) provides clinical benefits to non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. However, acquired resistance (AR) is a major obstacle to effective Gef therapy. This study demonstrated that resveratrol (Res) could synergize with Gef to inhibit the proliferation of Gef-resistant NSCLC cells. The underlying mechanisms of synergism were investigated, and the results showed that cotreatment with Gef and Res could inhibit EGFR phosphorylation by increasing intracellular Gef accumulation through the impairment of Gef elimination from PC9/G cells. Consistently, CYP1A1 and ABCG2 expression were inhibited. Meanwhile, the cotreatment significantly induced cell apoptosis, autophagy, cell cycle arrest and senescence accompanied by increased expression of cleaved caspase-3, LC3B-II, p53 and p21. Further studies revealed that autophagy inhibition enhanced apoptosis and abrogated senescence while apoptosis inhibition had no notable effect on cell autophagy and senescence during cotreatment with Gef and Res. These results indicated that in addition to apoptosis, senescence promoted by autophagy contributes to the antiproliferation effect of combined Gef and Res on PC9/G cells. In conclusion, combined treatment with Gef and Res may represent a rational strategy to overcome AR in NSCLC cells.
Collapse
Affiliation(s)
- Yinsong Zhu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenjuan He
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiujuan Gao
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bin Li
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chenghan Mei
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rong Xu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Chen
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 2013; 5:1009-21. [PMID: 23734684 DOI: 10.4155/fmc.13.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.
Collapse
|