1
|
Jahn SC, Gay LA, Weaver CJ, Renne R, Langaee TY, Stacpoole PW, James MO. Age-Related Changes in miRNA Expression Influence GSTZ1 and Other Drug Metabolizing Enzymes. Drug Metab Dispos 2020; 48:563-569. [PMID: 32357971 PMCID: PMC7289049 DOI: 10.1124/dmd.120.090639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
Previous work has shown that hepatic levels of human glutathione transferase zeta 1 (GSTZ1) protein, involved in tyrosine catabolism and responsible for metabolism of the investigational drug dichloroacetate, increase in cytosol after birth before reaching a plateau around age 7. However, the mechanism regulating this change of expression is still unknown, and previous studies showed that GSTZ1 mRNA levels did not correlate with GSTZ1 protein expression. In this study, we addressed the hypothesis that microRNAs (miRNAs) could regulate expression of GSTZ1. We obtained liver samples from donors aged less than 1 year or older than 13 years and isolated total RNA for use in a microarray to identify miRNAs that were downregulated in the livers of adults compared with children. From a total of 2578 human miRNAs tested, 63 miRNAs were more than 2-fold down-regulated in adults, of which miR-376c-3p was predicted to bind to the 3' untranslated region of GSTZ1 mRNA. There was an inverse correlation of miR-376c-3p and GSTZ1 protein expression in the liver samples. Using cell culture, we confirmed that miR-376c-3p could downregulate GSTZ1 protein expression. Our findings suggest that miR-376c-3p prevents production of GSTZ1 through inhibition of translation. These experiments further our understanding of GSTZ1 regulation. Furthermore, our array results provide a database resource for future studies on mechanisms regulating human hepatic developmental expression. SIGNIFICANCE STATEMENT: Hepatic glutathione transferase zeta 1 (GSTZ1) is responsible for metabolism of the tyrosine catabolite maleylacetoacetate as well as the investigational drug dichloroacetate. Through examination of microRNA (miRNA) expression in liver from infants and adults and studies in cells, we showed that expression of GSTZ1 is controlled by miRNA. This finding has application to the dosing regimen of the drug dichloroacetate. The miRNA expression profiles are provided and will prove useful for future studies of drug-metabolizing enzymes in infants and adults.
Collapse
Affiliation(s)
- Stephan C Jahn
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Lauren A Gay
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Claire J Weaver
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Rolf Renne
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Taimour Y Langaee
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Peter W Stacpoole
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| | - Margaret O James
- Departments of Medicinal Chemistry (S.C.J., C.J.W., M.O.J.), Pharmacotherapy and Translational Research (T.Y.L.), Medicine (P.W.S.), Biochemistry and Molecular Biology (P.W.S.), and Molecular Genetics and Microbiology (L.A.G., R.R.), University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Bina M, Wyss P, Song XC. Datasets on the genomic positions of the MLL1 morphemes, the ZFP57 binding site, and ZFBS-Morph overlaps in the build mm9 of the mouse genome. Data Brief 2017; 13:202-207. [PMID: 28616452 PMCID: PMC5458072 DOI: 10.1016/j.dib.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
While MLL1 activates gene expression in most tissues, ZFP57 represses transcription. MLL1 selectively interacts with a group of nonmethylated DNA sequences known as the MLL1 morphemes. ZFP57 associates with a methylated hexamer (ZFBS), dispersed in the genomic DNA segments known as Imprinted Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs), to maintain allele-specific gene repression. We have identified a set of composite DNA elements (ZFBS-Morph overlaps) that provides the sequence context of ZFBS in the canonical ICRs/gDMRs. This report provides tables listing the nucleotide sequences of the MLL1 morphemes and ZFBS-Morph overlaps. The report also offers links to the data repository at Purdue University, for downloading the positions of the MLL1 morphemes, the ZFP57 binding site, and the ZFBS-Morph overlaps in the mouse genome.
Collapse
Affiliation(s)
- Minou Bina
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Phillip Wyss
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Xiaohui C. Song
- Information Technology at Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Bina M. Imprinted control regions include composite DNA elements consisting of the ZFP57 binding site overlapping MLL1 morphemes. Genomics 2017; 109:265-273. [PMID: 28476430 DOI: 10.1016/j.ygeno.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 12/16/2022]
Abstract
Mammalian genomes include DNA segments that are imprinted (CpG-methylated) only on one of the two parental chromosomes, leading to parent-of-origin-specific gene expression. The process is regulated by Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, ZFP57 was shown to recognize a methylated hexanucleotide in ICRs to maintain allele-specific gene repression. In Bioinformatics analyses, I found that the hexamer occurred frequently in mouse chromosomal DNA, suggesting that beside the ZFP57 binding site (ZFBS), ICRs contained sequence features with unknown characteristics. To identify such features, I examined chromosomal abundance of motifs in which the length of the hexamer was extended by one or several nucleotides. Results led to the discovery of a group of functionally significant composite DNA elements (ZFBS-Morph overlaps) that may play dual roles in the regulation of allele-specific gene expression. Importantly, results of genome-wide evaluations revealed that nearly 90% of the gDMRs included closely-spaced ZFBS-Morph overlaps.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Bina M, Wyss P. Impact of the MLL1 morphemes on codon utilization and preservation in CpG Islands. Biopolymers 2015; 103:480-90. [PMID: 25991579 DOI: 10.1002/bip.22681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907
| | - Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
5
|
Bina M, Wyss P, Novorolsky E, Zulkelfi N, Xue J, Price R, Fay M, Gutmann Z, Fogler B, Wang D. Discovery of MLL1 binding units, their localization to CpG Islands, and their potential function in mitotic chromatin. BMC Genomics 2013; 14:927. [PMID: 24373511 PMCID: PMC3890651 DOI: 10.1186/1471-2164-14-927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Mixed Lineage Leukemia 1 (MLL1) is a mammalian ortholog of the Drosophila Trithorax. In Drosophila, Trithorax complexes transmit the memory of active genes to daughter cells through interactions with Trithorax Response Elements (TREs). However, despite their functional importance, nothing is known about sequence features that may act as TREs in mammalian genomic DNA. Results By analyzing results of reported DNA binding assays, we identified several CpG rich motifs as potential MLL1 binding units (defined as morphemes). We find that these morphemes are dispersed within a relatively large collection of human promoter sequences and appear densely packed near transcription start sites of protein-coding genes. Genome wide analyses localized frequent morpheme occurrences to CpG islands. In the human HOX loci, the morphemes are spread across CpG islands and in some cases tail into the surrounding shores and shelves of the islands. By analyzing results of chromatin immunoprecipitation assays, we found a connection between morpheme occurrences, CpG islands, and chromatin segments reported to be associated with MLL1. Furthermore, we found a correspondence of reported MLL1-driven “bookmarked” regions in chromatin to frequent occurrences of MLL1 morphemes in CpG islands. Conclusion Our results implicate the MLL1 morphemes in sequence-features that define the mammalian TREs and provide a novel function for CpG islands. Apparently, our findings offer the first evidence for existence of potential TREs in mammalian genomic DNA and the first evidence for a connection between CpG islands and gene-bookmarking by MLL1 to transmit the memory of highly active genes during mitosis. Our results further suggest a role for overlapping morphemes in producing closely packed and multiple MLL1 binding events in genomic DNA so that MLL1 molecules could interact and reside simultaneously on extended potential transcriptional maintenance elements in human chromosomes to transmit the memory of highly active genes during mitosis.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|