1
|
Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16:197. [PMID: 30016963 PMCID: PMC6050722 DOI: 10.1186/s12967-018-1579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS UDP-glucuronosyltransferase 1A subfamily (UGT1A) enzymes can inactivate cytarabine (Ara-C) by glucuronidation, and thus serves as candidate genes for interindividual difference in Ara-C response. UGT1A1 is a major UGT1A isoform expressed in human liver. METHODS UGT1A1*6 and *28 polymorphisms resulting in reduced UGT1A1 activity were genotyped in 726 adult acute myeloid leukemia (AML) patients treated with Ara-C based regimens. Influences of both polymorphisms on chemosensitivity and disease prognosis of the patients were evaluated. RESULTS After one or two courses of Ara-C based induction chemotherapy, the complete remission (CR) rate was significantly higher in patients carrying the UGT1A1*6 (77.0%) or the UGT1A1*28 (76.4%) alleles as compared with corresponding wild-type homozygotes (66.9 and 68.5%, respectively). Carriers of the UGT1A1*6 or *28 alleles showed significantly decreased risk of non-CR (OR = 0.528, 95% CI 0.379-0.737, P = 1.7 × 10-4) and better overall survival (HR = 0.787, 95% CI 0.627-0.990, P = 0.040) as compared with homozygotes for both polymorphisms. CONCLUSION Our results suggest that UGT1A1*28 and UGT1A1*6 are associated with improved clinical outcomes in Chinese AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Improved short-sequence-repeat genotyping of Mycobacterium avium subsp. paratuberculosis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2013; 80:534-9. [PMID: 24212568 DOI: 10.1128/aem.03212-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate sequence analysis of mononucleotide repeat regions is difficult, complicating the use of short sequence repeats (SSRs) as a tool for bacterial strain discrimination. Although multiple SSR loci in the genome of Mycobacterium avium subsp. paratuberculosis allow genotyping of M. avium subsp. paratuberculosis isolates with high discriminatory power, further characterization of the most discriminatory loci is limited due to inherent difficulties in sequencing mononucleotide repeats. Here, a method was evaluated using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as an alternative to Sanger sequencing to further differentiate the dominant mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) M. avium subsp. paratuberculosis type (n = 37) in Canadian dairy herds by targeting a highly discriminatory mononucleotide SSR locus. First, PCR-amplified DNA was digested with two restriction enzymes to yield a sufficiently small fragment containing the SSR locus. Second, MALDI-TOF MS was performed to identify the mass, and thus repeat length, of the target. Sufficiently intense, discriminating spectra were obtained to determine repeat lengths up to 15, an improvement over the limit of 11 using traditional sequencing techniques. Comparison to synthetic oligonucleotides and Sanger sequencing results confirmed a valid and reproducible assay that increased discrimination of the dominant M. avium subsp. paratuberculosis MIRU-VNTR type. Thus, MALDI-TOF MS was a reliable, fast, and automatable technique to accurately resolve M. avium subsp. paratuberculosis genotypes based on SSRs.
Collapse
|
4
|
Hoskins JM, Marcuello E, Altes A, Marsh S, Maxwell T, Van Booven DJ, Paré L, Culverhouse R, McLeod HL, Baiget M. Irinotecan pharmacogenetics: influence of pharmacodynamic genes. Clin Cancer Res 2008; 14:1788-96. [PMID: 18347181 DOI: 10.1158/1078-0432.ccr-07-1472] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Irinotecan is an important drug for the treatment of solid tumors. Although genes involved in irinotecan pharmacokinetics have been shown to influence toxicity, there are no data on pharmacodynamic genes. CDC45L, NFKB1, PARP1, TDP1, and XRCC1 have been shown to influence the cytotoxic action of camptothecins, including irinotecan. Polymorphisms in the drug target of camptothecins, topoisomerase I (TOP1), and downstream effectors may influence patient outcomes to irinotecan therapy. We undertook a retrospective candidate gene haplotype association study to investigate this hypothesis. EXPERIMENTAL DESIGN Haplotype compositions of six candidate genes were constructed in European (n = 93), East Asian (n = 94), and West African (n = 95) populations. Haplotype-tagging single nucleotide polymorphisms (htSNP) were selected based on genealogic relationships between haplotypes. DNA samples from 107 European, advanced colorectal cancer patients treated with irinotecan-based regimens were genotyped for htSNPs as well as three coding region SNPs. Associations between genetic variants and toxicity (grade 3/4 diarrhea and neutropenia) or efficacy (objective response) were assessed. RESULTS TOP1 and TDP1 htSNPs were related to grade 3/4 neutropenia (P = 0.04) and response (P = 0.04), respectively. Patients homozygous for an XRCC1 haplotype (GGCC-G) were more likely to show an objective response to therapy than other patients (83% versus 30%; P = 0.02). This effect was also seen in a multivariate analysis (odds ratio, 11.9; P = 0.04). No genetic variants were associated with diarrhea. CONCLUSIONS This is the first comprehensive pharmacogenetic investigation of irinotecan pharmacodynamic factors, and our findings suggest that genetic variation in the pharmacodynamic genes may influence the efficacy of irinotecan-containing therapies in advanced colorectal cancer patients.
Collapse
Affiliation(s)
- Janelle M Hoskins
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol 2007; 25:4528-35. [PMID: 17925548 DOI: 10.1200/jco.2006.10.4752] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Standard therapy for advanced ovarian cancer consists of a platinum agent in combination with a taxane, which has a 5-year survival rate of approximately 45%. The large individual variability for ovarian cancer patients in both outcome and toxicity risk from chemotherapy makes the identification of pharmacogenetic markers that can be used to screen patients before therapy selection an attractive prospect. PATIENTS AND METHODS We assessed 27 selected polymorphisms based on previously described associations or putative functional effects in 16 key genes from pathways that may influence cellular sensitivity to taxanes (ABCB1, ABCC1, ABCC2, ABCG2, CDKN1A, CYP1B1, CYP2C8, CYP3A4, CYP3A5, MAPT, and TP53) and platinum (ABCC2, ABCG2, ERCC1, ERCC2, GSTP1, MPO, and XRCC1) using polymerase chain reaction and Pyrosequencing in 914 ovarian cancer patients from the Scottish Randomised Trial in Ovarian Cancer phase III trial who were treated at presentation with carboplatin and taxane regimens after cytoreductive surgery. RESULTS No reproducible significant associations between genotype and outcome or toxicity were found for any of the genes analyzed. Previously reported genotype associations could not be replicated in this large study of a well-defined patient population within one specific clinical trial. CONCLUSION There are no clear candidates for taxane/platinum pharmacogenetic markers. This study highlights the need for validation of putative genetic markers in large, well-defined clinical sample sets.
Collapse
Affiliation(s)
- Sharon Marsh
- Washington University School of Medicine, Division of Oncology, St Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Hahn NM, Marsh S, Fisher W, Langdon R, Zon R, Browning M, Johnson CS, Scott-Horton TJ, Li L, McLeod HL, Sweeney CJ. Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 2006; 12:6094-9. [PMID: 17062685 DOI: 10.1158/1078-0432.ccr-06-1188] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the safety and efficacy of two docetaxel doublets in hormone-refractory prostate cancer (HRPC) patients and to examine the prognostic role of polymorphisms in host genes important to docetaxel metabolism and transport. EXPERIMENTAL DESIGN Sixty-four chemotherapy-naive patients with HRPC were randomized to docetaxel and vinorelbine (D, 20 mg/m2 i.v. days 1 and 8; V, 25 mg/m2 i.v. days 1 and 8) or docetaxel and estramustine phosphate (D, 60-70 mg/m2 i.v. day 1; E, 280 mg oral thrice daily days 1-5) administered q21d. Primary end point was clinically significant toxicity. A pharmacogenetic analysis of host genes was done in patients who received at least one cycle of docetaxel therapy. RESULTS Grade 3/4 toxicity occurred in 15.6% of DV patients and in 28.6% DE patients. Neither arm exceeded the threshold of clinically significant toxicity. In the DV arm, objective response rate was 33%, prostate-specific antigen response rate was 20%, and median survival was 16.2 months. In the DE arm, objective response rate was 67%, prostate-specific antigen response rate was 43%, and median survival was 19.7 months. Pharmacogenetic analyses showed a significant association between survival beyond 15 months and the ABCG2 421 C > A (Q141K) polymorphism compared with the wild-type (C/C) genotype (66% versus 27%; P = 0.05). CONCLUSIONS DV and DE doublets are active with a tolerable toxicity profile in patients with HRPC; however, efficacy does not seem superior to standard single-agent docetaxel. The ABCG2 421 C > A (Q141K) polymorphism may be an important predictor of response and survival in HRPC patients treated with docetaxel-based chemotherapy.
Collapse
Affiliation(s)
- Noah M Hahn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brakensiek K, Wingen LU, Länger F, Kreipe H, Lehmann U. Quantitative high-resolution CpG island mapping with Pyrosequencing reveals disease-specific methylation patterns of the CDKN2B gene in myelodysplastic syndrome and myeloid leukemia. Clin Chem 2006; 53:17-23. [PMID: 17095538 DOI: 10.1373/clinchem.2007.072629] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gene silencing through aberrant CpG island methylation is the most extensively analyzed epigenetic event in human tumorigenesis and has huge diagnostic and prognostic potential. Methylation patterns are often very heterogeneous, however, presenting a serious challenge for the development of methylation assays for diagnostic purposes. METHODS We used Pyrosequencing technology to determine the methylation status of 68 CpG sites in the CpG island of the CDKN2B gene [cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)], frequently hypermethylated in myeloid malignancies, in a series of bone marrow samples from patients with myelodysplasia and myeloid leukemia (n = 82) and from 32 controls. A total of 7762 individual methylation sites were quantitatively evaluated. Precision and reproducibility of the quantification was evaluated with several overlapping primers. RESULTS The use of optimized sequencing primers and the new Pyro Q-CpG software enabled precise and reproducible quantification with a single sequencing primer of up to 15 CpG sites distributed over approximately 100 bp. Extensive statistical analyses of the whole CpG island revealed for the first time disease-specific methylation patterns of the CDKN2B gene in myeloid malignancies and small regions of differential methylation with high discriminatory power that enabled differentiation of even low-grade myelodysplastic syndrome samples from the controls, a result that was confirmed in an independent group of 9 control and 36 patient samples. CONCLUSION The precise quantitative methylation mapping of whole CpG islands is now possible with Pyrosequencing software in combination with optimized sequencing primers. This method reveals disease-specific methylation patterns and enables the development of specific diagnostic assays.
Collapse
Affiliation(s)
- Kai Brakensiek
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
8
|
Yu J, Mallon MA, Zhang W, Freimuth RR, Marsh S, Watson MA, Goodfellow PJ, McLeod HL. DNA repair pathway profiling and microsatellite instability in colorectal cancer. Clin Cancer Res 2006; 12:5104-5111. [PMID: 16951227 DOI: 10.1158/1078-0432.ccr-06-0547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ability to maintain DNA integrity is a critical cellular function. DNA repair is conducted by distinct pathways of genes, many of which are thought to be altered in colorectal cancer. However, there has been little characterization of these pathways in colorectal cancer. METHOD By using the TaqMan real-time quantitative PCR, RNA expression profiling of 20 DNA repair pathway genes was done in matched tumor and normal tissues from 52 patients with Dukes' C colorectal cancer. RESULTS The relative mRNA expression level across the 20 DNA repair pathway genes varied considerably, and the individual variability was also quite large, with an 85.4 median fold change in the tumor tissue genes and a 127.2 median fold change in the normal tissue genes. Tumor-normal differential expression was found in 13 of 20 DNA repair pathway genes (only XPA had a lower RNA level in the tumor samples; the other 12 genes had significantly higher tumor levels, all P<0.01). Coordinated expression of ERCC6, HMG1, MSH2, and POLB (RS>or=0.60) was observed in the tumor tissues (all P<0.001). Apoptosis index was not correlated with expression of the 20 DNA repair pathway genes. MLH1 and XRCC1 RNA expression was correlated with microsatellite instability status (P=0.045 and 0.020, respectively). An inverse correlation was found between tumor MLH1 RNA expression and MLH1 DNA methylation (P=0.003). CONCLUSION Our study provides an initial characterization of the DNA repair pathways for understanding the cellular DNA damage/repair system in human colorectal cancer.
Collapse
Affiliation(s)
- Jinsheng Yu
- Department of Medicine, Washington University School of Medicine and Siteman Cancer Center, Saint Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | | | |
Collapse
|