1
|
Ceasar SA, Prabhu S, Ebeed HT. Protein research in millets: current status and way forward. PLANTA 2024; 260:43. [PMID: 38958760 DOI: 10.1007/s00425-024-04478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
2
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
3
|
Rödiger A, Agne B, Dobritzsch D, Helm S, Müller F, Pötzsch N, Baginsky S. Chromoplast differentiation in bell pepper (Capsicum annuum) fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1431-1442. [PMID: 33258209 DOI: 10.1111/tpj.15104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6 f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts' redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.
Collapse
Affiliation(s)
- Anja Rödiger
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Birgit Agne
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Fränze Müller
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Nina Pötzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
PhosPhAt 4.0: An Updated Arabidopsis Database for Searching Phosphorylation Sites and Kinase-Target Interactions. Methods Mol Biol 2021; 2358:189-202. [PMID: 34270056 DOI: 10.1007/978-1-0716-1625-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The PhosPhAt 4.0 database contains information on Arabidopsis phosphorylation sites identified by mass spectrometry in large-scale experiments from different research groups. So far PhosPhAt 4.0 has been one of the most significant large-scale data resources for plant phosphorylation studies. Functionalities of the web application, besides display of phosphorylation sites, include phosphorylation site prediction and kinase-target relationships retrieval. Here, we present an overview and user instructions for the PhosPhAt 4.0 database, with strong emphasis on recent renewals regarding protein annotation by SUBA4.0 and Mapman4, and additional phosphorylation site information imported from other databases, such as UniProt. Here, we provide a user guide for the retrieval of phosphorylation motifs from the kinase-target database and how to visualize these results. The improvements incorporated into the PhosPhAt 4.0 database have produced much more functionality and user flexibility for phosphoproteomic analysis.
Collapse
|
5
|
Yu X, Wang Y, Kohnen MV, Piao M, Tu M, Gao Y, Lin C, Zuo Z, Gu L. Large Scale Profiling of Protein Isoforms Using Label-Free Quantitative Proteomics Revealed the Regulation of Nonsense-Mediated Decay in Moso Bamboo ( Phyllostachys edulis). Cells 2019; 8:E744. [PMID: 31330982 PMCID: PMC6678154 DOI: 10.3390/cells8070744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Moso bamboo is an important forest species with a variety of ecological, economic, and cultural values. However, the gene annotation information of moso bamboo is only based on the transcriptome sequencing, lacking the evidence of proteome. The lignification and fiber in moso bamboo leads to a difficulty in the extraction of protein using conventional methods, which seriously hinders research on the proteomics of moso bamboo. The purpose of this study is to establish efficient methods for extracting the total proteins from moso bamboo for following mass spectrometry-based quantitative proteome identification. Here, we have successfully established a set of efficient methods for extracting total proteins of moso bamboo followed by mass spectrometry-based label-free quantitative proteome identification, which further improved the protein annotation of moso bamboo genes. In this study, 10,376 predicted coding genes were confirmed by quantitative proteomics, accounting for 35.8% of all annotated protein-coding genes. Proteome analysis also revealed the protein-coding potential of 1015 predicted long noncoding RNA (lncRNA), accounting for 51.03% of annotated lncRNAs. Thus, mass spectrometry-based proteomics provides a reliable method for gene annotation. Especially, quantitative proteomics revealed the translation patterns of proteins in moso bamboo. In addition, the 3284 transcript isoforms from 2663 genes identified by Pacific BioSciences (PacBio) single-molecule real-time long-read isoform sequencing (Iso-Seq) was confirmed on the protein level by mass spectrometry. Furthermore, domain analysis of mass spectrometry-identified proteins encoded in the same genomic locus revealed variations in domain composition pointing towards a functional diversification of protein isoform. Finally, we found that part transcripts targeted by nonsense-mediated mRNA decay (NMD) could also be translated into proteins. In summary, proteomic analysis in this study improves the proteomics-assisted genome annotation of moso bamboo and is valuable to the large-scale research of functional genomics in moso bamboo. In summary, this study provided a theoretical basis and technical support for directional gene function analysis at the proteomics level in moso bamboo.
Collapse
Affiliation(s)
- Xiaolan Yu
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Min Tu
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Schönberg A, Rödiger A, Mehwald W, Galonska J, Christ G, Helm S, Thieme D, Majovsky P, Hoehenwarter W, Baginsky S. Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1176-1186. [PMID: 28295753 DOI: 10.1111/tpj.13536] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.
Collapse
Affiliation(s)
- Anna Schönberg
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Wiebke Mehwald
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Johann Galonska
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Gideon Christ
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Domenika Thieme
- Proteomeanalytik, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Petra Majovsky
- Proteomeanalytik, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Richter AS, Gartmann H, Fechler M, Rödiger A, Baginsky S, Grimm B. Identification of four plastid-localized protein kinases. FEBS Lett 2016; 590:1749-56. [PMID: 27214872 DOI: 10.1002/1873-3468.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2023]
Abstract
In chloroplasts, protein phosphorylation regulates important processes, including metabolism, photosynthesis, gene expression, and signaling. Because the hitherto known plastid protein kinases represent only a fraction of existing kinases, we aimed at the identification of novel plastid-localized protein kinases that potentially phosphorylate enzymes of the tetrapyrrole biosynthesis (TBS) pathway. We screened publicly available databases for proteins annotated as putative protein kinase family proteins with predicted chloroplast localization. Additionally, we analyzed chloroplast fractions which were separated by sucrose density gradient centrifugation by mass spectrometry. We identified four new candidates for protein kinases, which were confirmed to be plastid localized by expression of GFP-fusion proteins in tobacco leaves. A phosphorylation assay with the purified kinases confirmed the protein kinase activity for two of them.
Collapse
Affiliation(s)
- Andreas S Richter
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Hans Gartmann
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Mona Fechler
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| | - Anja Rödiger
- Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sacha Baginsky
- Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Grimm
- Humboldt Universität zu Berlin, Institute of Biology/Plant Physiology, Berlin, Germany
| |
Collapse
|
8
|
Riffle M, Merrihew GE, Jaschob D, Sharma V, Davis TN, Noble WS, MacCoss MJ. Visualization and dissemination of multidimensional proteomics data comparing protein abundance during Caenorhabditis elegans development. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1827-1836. [PMID: 26133526 PMCID: PMC4607629 DOI: 10.1007/s13361-015-1193-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/ . Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Daniel Jaschob
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Grimmer J, Rödiger A, Hoehenwarter W, Helm S, Baginsky S. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. FRONTIERS IN PLANT SCIENCE 2014; 5:258. [PMID: 24982663 PMCID: PMC4059279 DOI: 10.3389/fpls.2014.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 05/08/2023]
Abstract
The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process.
Collapse
Affiliation(s)
- Julia Grimmer
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Anja Rödiger
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany e-mail:
| |
Collapse
|