1
|
Musiari A, Reichenbach M, Gallo S, Sigel RKO. Corrin Ring Modifications Reveal the Chemical and Spatial Requirements for the B 12-btuB Riboswitch Interaction. Chemistry 2024; 30:e202401800. [PMID: 38922714 DOI: 10.1002/chem.202401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The btuB riboswitch is a regulatory RNA sequence controlling gene expression of the outer membrane B12 transport protein BtuB by specifically binding coenzyme B12 (AdoCbl) as its natural ligand. The B12 sensing riboswitch class is known to accept various B12 derivatives, leading to a division into two riboswitch subclasses, dependent on the size of the apical ligand. Here we focus on the role of side chains b and e on affinity and proper recognition, i. e. correct structural switch of the btuB RNA, which belongs to the AdoCbl-binding class I. Chemical modification of these side chains disturbs crucial hydrogen bonds and/or electrostatic interactions with the RNA, its effect on both affinity and switching being monitored by in-line probing. Chemical modifications at sidechain b of vitamin B12 show larger effects indicating crucial B12-RNA interactions. When introducing the same modification to AdoCbl the influence of any side-chain modification tested is reduced. This renders the impact of the adenosyl-ligand for B12-btuB riboswitch recognition clearly beyond the known role in affinity.
Collapse
Affiliation(s)
- Anastasia Musiari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - María Reichenbach
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sofia Gallo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
2
|
Patel S, Sexton AN, Strine MS, Wilen CB, Simon MD, Pyle AM. Systematic detection of tertiary structural modules in large RNAs and RNP interfaces by Tb-seq. Nat Commun 2023; 14:3426. [PMID: 37296103 PMCID: PMC10255950 DOI: 10.1038/s41467-023-38623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Compact RNA structural motifs control many aspects of gene expression, but we lack methods for finding these structures in the vast expanse of multi-kilobase RNAs. To adopt specific 3-D shapes, many RNA modules must compress their RNA backbones together, bringing negatively charged phosphates into close proximity. This is often accomplished by recruiting multivalent cations (usually Mg2+), which stabilize these sites and neutralize regions of local negative charge. Coordinated lanthanide ions, such as terbium (III) (Tb3+), can also be recruited to these sites, where they induce efficient RNA cleavage, thereby revealing compact RNA 3-D modules. Until now, Tb3+ cleavage sites were monitored via low-throughput biochemical methods only applicable to small RNAs. Here we present Tb-seq, a high-throughput sequencing method for detecting compact tertiary structures in large RNAs. Tb-seq detects sharp backbone turns found in RNA tertiary structures and RNP interfaces, providing a way to scan transcriptomes for stable structural modules and potential riboregulatory motifs.
Collapse
Affiliation(s)
- Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Alec N Sexton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Anna Marie Pyle
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Amadei F, Reichenbach M, Gallo S, Sigel RKO. The structural features of the ligand-free moaA riboswitch and its ion-dependent folding. J Inorg Biochem 2023; 242:112153. [PMID: 36774787 DOI: 10.1016/j.jinorgbio.2023.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E. coli. This RNA proposedly responds to the molybdenum cofactor (Moco), a highly oxygen-sensitive metabolite, essential in the carbon and sulfur cycles of eukaryotes. K+- and Mg2+-dependent footprinting assays and spectroscopic investigations show a high degree of structure formation of this RNA already at very low ion-concentrations. Mg2+ facilitates additionally a general compaction of the riboswitch towards its proposed active structure. We show that this fold agrees with the earlier suggested secondary structure which included also a long-range tetraloop/tetraloop-receptor like interaction. Metal ion cleavage assays revealed specific Mg2+-binding pockets within the moaA riboswitch. These Mg2+ binding pockets are good indicators for the potential Moco binding site, since in riboswitches, Mg2+ was shown to be necessary to bind phosphate-carrying metabolites. The importance of the phosphate and of other functional groups of Moco is highlighted by binding assays with tetrahydrobiopterin, the reduced and oxygen-sensitive core moiety of Moco. We demonstrate that the general molecular shape of pterin by its own is insufficient for the recognition by the riboswitch.
Collapse
Affiliation(s)
- Fabio Amadei
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - María Reichenbach
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sofia Gallo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
4
|
Rojas AML, Drusin SI, Chorostecki U, Mateos JL, Moro B, Bologna NG, Bresso EG, Schapire A, Rasia RM, Moreno DM, Palatnik JF. Identification of key sequence features required for microRNA biogenesis in plants. Nat Commun 2020; 11:5320. [PMID: 33087730 PMCID: PMC7577975 DOI: 10.1038/s41467-020-19129-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis. The secondary structure of miRNA precursor sequences is known to affect processing by DICER-like proteins. Here Rojas et al. show that additional sequence features also play a regulatory role in plants with nucleotide identity at unpaired positions substantially impacting processing efficiency.
Collapse
Affiliation(s)
- Arantxa M L Rojas
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Salvador I Drusin
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Física, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Santa Fe, Argentina
| | - Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Barcelona Supercomputing Centre (BSC-CNS), Barcelona, (08034), Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, (08028), Spain
| | - Julieta L Mateos
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, (1428), Argentina
| | - Belén Moro
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Nicolas G Bologna
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Edgardo G Bresso
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Arnaldo Schapire
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodolfo M Rasia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK, Rosario, Santa Fe, Argentina.,Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina. .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
5
|
Choudhary PK, Gallo S, Sigel RKO. Tb 3+-Cleavage Assays Reveal Specific Mg 2+ Binding Sites Necessary to Pre-fold the btuB Riboswitch for AdoCbl Binding. Front Chem 2017; 5:10. [PMID: 28377919 PMCID: PMC5359240 DOI: 10.3389/fchem.2017.00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/14/2017] [Indexed: 01/31/2023] Open
Abstract
Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.
Collapse
Affiliation(s)
| | - Sofia Gallo
- Department of Chemistry, University of Zürich Zürich, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich Zürich, Switzerland
| |
Collapse
|
6
|
Skilandat M, Rowinska-Zyrek M, Sigel RKO. Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. RNA (NEW YORK, N.Y.) 2016; 22:750-763. [PMID: 26966151 PMCID: PMC4836649 DOI: 10.1261/rna.053843.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg(2+), the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb(3+)-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg(2+)ions. Up to eight Mg(2+)ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%-90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg(2+)promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg(2+)binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg(2+)for the nested double pseudoknot structure.
Collapse
Affiliation(s)
- Miriam Skilandat
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
8
|
Characterization of the full-length btuB riboswitch from Klebsiella pneumoniae. J Inorg Biochem 2015; 160:106-13. [PMID: 26765998 DOI: 10.1016/j.jinorgbio.2015.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
Riboswitches are cis-regulatory RNA elements on the mRNA level that control the expression of the downstream coding region. The interaction of the riboswitch with its specific metabolite, which is related to the function of the controlled gene, induces a structural change of the RNA architecture. Consequently, gene regulation is induced by un/masking of the ribosome binding site (RBS). In the genome of Klebsiella pneumoniae a sequence was identified by bioinformatics and proposed to be a B12 riboswitch regulated by coenzyme B12. Here we study this new coenzyme B12-dependent riboswitch system by in-line probing and ITC. The riboswitch sequence includes the whole expression platform as well as RBS. In-line probing experiments were performed to investigate the structural rearrangement of this 243-nt long RNA sequence while Isothermal Titration Calorimetry (ITC) yielded the thermodynamic parameters of the interaction between the riboswitch and its metabolite. The interaction of coenzyme B12 with the butB riboswitch of K. pneumoniae is an exothermic process with a 1:1 binding stoichiometry and binding affinities of log KA=6.73±0.02 at 15°C and log KA=6.00±0.09 at 30°C.
Collapse
|
9
|
The AdoCbl–Riboswitch Interaction Investigated by In-Line Probing and Surface Plasmon Resonance Spectroscopy (SPR). Methods Enzymol 2014. [DOI: 10.1016/b978-0-12-801122-5.00020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Choudhary PK, Sigel RK. Mg(2+)-induced conformational changes in the btuB riboswitch from E. coli. RNA (NEW YORK, N.Y.) 2014; 20:36-45. [PMID: 24243114 PMCID: PMC3866643 DOI: 10.1261/rna.039909.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Mg(2+) has been shown to modulate the function of riboswitches by facilitating the ligand-riboswitch interactions. The btuB riboswitch from Escherichia coli undergoes a conformational change upon binding to its ligand, coenzyme B12 (adenosyl-cobalamine, AdoCbl), and down-regulates the expression of the B12 transporter protein BtuB in order to control the cellular levels of AdoCbl. Here, we discuss the structural folding attained by the btuB riboswitch from E. coli in response to Mg(2+) and how it affects the ligand binding competent conformation of the RNA. The btuB riboswitch notably adopts different conformational states depending upon the concentration of Mg(2+). With the help of in-line probing, we show the existence of at least two specific conformations, one being achieved in the complete absence of Mg(2+) (or low Mg(2+) concentration) and the other appearing above ∼0.5 mM Mg(2+). Distinct regions of the riboswitch exhibit different dissociation constants toward Mg(2+), indicating a stepwise folding of the btuB RNA. Increasing the Mg(2+) concentration drives the transition from one conformation toward the other. The conformational state existing above 0.5 mM Mg(2+) defines the binding competent conformation of the btuB riboswitch which can productively interact with the ligand, coenzyme B12, and switch the RNA conformation. Moreover, raising the Mg(2+) concentration enhances the ratio of switched RNA in the presence of AdoCbl. The lack of a AdoCbl-induced conformational switch experienced by the btuB riboswitch in the absence of Mg(2+) indicates a crucial role played by Mg(2+) for defining an active conformation of the riboswitch.
Collapse
|
11
|
Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 2013; 195:5186-95. [PMID: 24039263 DOI: 10.1128/jb.00730-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The strategic adaptation of prokaryotes in polluted niches involves the efficient regulation of their metabolism. The obligate anaerobe and metabolically versatile Desulfitobacterium hafniense reductively dechlorinates halogenated organic compounds (so-called organohalides). Some D. hafniense strains carry out organohalide respiration (OHR), a process which requires the use of corrinoid as a cofactor in reductive dehalogenases, the key enzymes in OHR. We report here the diversity of the cobalamin riboswitches that possibly regulate the corrinoid metabolism for D. hafniense. The analysis of available D. hafniense genomes indicates the presence of 18 cobalamin riboswitches located upstream of genes whose products are mainly involved in corrinoid biosynthesis and transport. To obtain insight into their function, the secondary structures of three of these RNA elements were predicted by Mfold, as well as analyzed by in-line probing. These RNA elements both display diversity in their structural elements and exhibit various affinities toward adenosylcobalamin that possibly relates to their role in the regulation of corrinoid metabolism. Furthermore, adenosylcobalamin-induced in vivo repression of RNA synthesis of the downstream located genes indicates that the corrinoid transporters and biosynthetic enzymes in D. hafniense strain TCE1 are regulated at the transcriptional level. Taken together, the riboswitch-mediated regulation of the complex corrinoid metabolism in D. hafniense could be of crucial significance in environments polluted with organohalides both to monitor their intracellular corrinoid level and to coexist with corrinoid-auxotroph OHR bacteria.
Collapse
|