1
|
Zhang Y, Li X, Xie H, Zhuang W, Guo S, Li Z. Multi-Label Action Anticipation for Real-World Videos With Scene Understanding. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:3242-3255. [PMID: 38662558 DOI: 10.1109/tip.2024.3391692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
With human action anticipation becoming an essential tool for many practical applications, there has been an increasing trend in developing more accurate anticipation models in recent years. Most of the existing methods target standard action anticipation datasets, in which they could produce promising results by learning action-level contextual patterns. However, the over-simplified scenarios of standard datasets often do not hold in reality, which hinders them from being applied to real-world applications. To address this, we propose a scene-graph-based novel model SEAD that learns the action anticipation at the high semantic level rather than focusing on the action level. The proposed model is composed of two main modules, 1) the scene prediction module, which predicts future scene graphs using a grammar dictionary, and 2) the action anticipation module, which is responsible for predicting future actions with an LSTM network by taking as input the observed and predicted scene graphs. We evaluate our model on two real-world video datasets (Charades and Home Action Genome) as well as a standard action anticipation dataset (CAD-120) to verify its efficacy. The experimental results show that SEAD is able to outperform existing methods by large margins on the two real-world datasets and can also yield stable predictions on the standard dataset at the same time. In particular, our proposed model surpasses the state-of-the-art methods with mean average precision improvements consistently higher than 65% on the Charades dataset and an average improvement of 40.6% on the Home Action Genome dataset.
Collapse
|
2
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
3
|
Fukunaga T, Hamada M. Computational approaches for alternative and transient secondary structures of ribonucleic acids. Brief Funct Genomics 2018; 18:182-191. [PMID: 30689706 DOI: 10.1093/bfgp/ely042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transient and alternative structures of ribonucleic acids (RNAs) play essential roles in various regulatory processes, such as translation regulation in living cells. Because experimental analyses for RNA structures are difficult and time-consuming, computational approaches based on RNA secondary structures are promising. In this article, we review computational methods for detecting and analyzing transient/alternative secondary structures of RNAs, including static approaches based on probabilistic distributions of RNA secondary structures and dynamic approaches such as kinetic folding and folding pathway predictions.
Collapse
|
4
|
Antunes D, Jorge NAN, Caffarena ER, Passetti F. Using RNA Sequence and Structure for the Prediction of Riboswitch Aptamer: A Comprehensive Review of Available Software and Tools. Front Genet 2018; 8:231. [PMID: 29403526 PMCID: PMC5780412 DOI: 10.3389/fgene.2017.00231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications.
Collapse
Affiliation(s)
- Deborah Antunes
- Scientific Computing Program (PROCC), Computational Biophysics and Molecular Modeling Group, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natasha A N Jorge
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Ernesto R Caffarena
- Scientific Computing Program (PROCC), Computational Biophysics and Molecular Modeling Group, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| |
Collapse
|
5
|
Abstract
Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Ivo L Hofacker
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.,Bioinformatics and Computational Biology Research Group, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Peter F Stadler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria. .,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany. .,Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA.
| |
Collapse
|
6
|
Janssen S, Giegerich R. Ambivalent covariance models. BMC Bioinformatics 2015; 16:178. [PMID: 26017195 PMCID: PMC4504443 DOI: 10.1186/s12859-015-0569-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary variations let us define a set of similar nucleic acid sequences as a family if these different molecules execute a common function. Capturing their sequence variation by using e. g. position specific scoring matrices significantly improves sensitivity of detection tools. Members of a functional (non-coding) RNA family are affected by these variations not only on the sequence, but also on the structural level. For example, some transfer-RNAs exhibit a fifth helix in addition to the typical cloverleaf structure. Current covariance models - the unrivaled homology search approach for structured RNA - do not benefit from structural variation within a family, but rather penalize it. This leads to artificial subdivision of families and loss of information in the RFAM database. RESULTS We propose an extension to the fundamental architecture of covariance models to allow for several, compatible consensus structures. The resulting models are called ambivalent covariance models. Evaluation on several RFAM families shows that coalescence of structural variation within a family by using ambivalent consensus models is superior to subdividing the family into multiple classical covariance models. CONCLUSION A prototype and source code is available at http://bibiserv.cebitec.uni-bielefeld.de/acms.
Collapse
Affiliation(s)
- Stefan Janssen
- Practical Computer Science, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany.
| | - Robert Giegerich
- Practical Computer Science, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany.
| |
Collapse
|