1
|
Dimond A, Van de Pette M, Fisher AG. Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends Immunol 2020; 41:994-1005. [PMID: 33036908 DOI: 10.1016/j.it.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The remarkable process of light emission by living organisms has fascinated mankind for thousands of years. A recent expansion in the repertoire of catalytic luciferase enzymes, coupled with the discovery of the genes and pathways that encode different luciferin substrates, means that bioluminescence imaging (BLI) is set to revolutionize longitudinal and dynamic studies of gene control within biomedicine, including the regulation of immune responses. In this review article, we summarize recent advances in bioluminescence-based imaging approaches that promise to enlighten our understanding of in vivo gene and epigenetic control within the immune system.
Collapse
Affiliation(s)
- Andrew Dimond
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Mechanisms of Toxicity, MRC Toxicology Unit, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
2
|
Cevenini L, Calabretta MM, Calabria D, Roda A, Michelini E. Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology? ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 154:3-17. [PMID: 25898810 DOI: 10.1007/10_2015_325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The latest advances in molecular biology have made available several biotechnological tools that take advantage of the high detectability and quantum efficiency of bioluminescence (BL), with an ever-increasing number of novel applications in environmental, pharmaceutical, food, and forensic fields. Indeed, BL proteins are being used to develop ultrasensitive binding assays and cell-based assays, thanks to their high detectability and to the availability of highly sensitive BL instruments. The appealing aspect of molecular biology tools relying on BL reactions is their general applicability in both in vitro assays, such as cell cultures or purified proteins, and in vivo settings, such as in whole-animal BL imaging. The aim of this chapter is to provide the reader with an overview of state-of-the-art bioluminescent tools based on luciferase genes, highlighting molecular biology strategies that have been applied so far, together with some selected examples.
Collapse
Affiliation(s)
- L Cevenini
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - M M Calabretta
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - D Calabria
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - A Roda
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - E Michelini
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
4
|
Alessandrini F, Ceresa D, Appolloni I, Marubbi D, Malatesta P. Noninvasive Monitoring of Glioma Growth in the Mouse. J Cancer 2016; 7:1791-1797. [PMID: 27698917 PMCID: PMC5039361 DOI: 10.7150/jca.15564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/17/2016] [Indexed: 02/01/2023] Open
Abstract
Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo orthotopic models could doubtless represent an appropriate tool to test novel treatment for gliomas. However, methods commonly used to monitor the growth of glioma inside the mouse brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure, based on a secreted luciferase (Gaussia luciferase), to frequently monitor the changes of glioma size. Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week, allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity and tumor size by analysing the tumor after brain dissection. We found that this method is reliable for monitoring human glioma transplanted in immunodeficient mice, but it has strong limitation in immunocompetent models, where an immune response against the luciferase is developed during the first weeks after transplant.
Collapse
Affiliation(s)
- Francesco Alessandrini
- Department of Experimental Medicine (DiMES), University of Genoa, Leon Battista Alberti 2, 16132, Genoa-Italy
| | - Davide Ceresa
- Department of Experimental Medicine (DiMES), University of Genoa, Leon Battista Alberti 2, 16132, Genoa-Italy
| | - Irene Appolloni
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132, Genoa-Italy
| | - Daniela Marubbi
- Department of Experimental Medicine (DiMES), University of Genoa, Leon Battista Alberti 2, 16132, Genoa-Italy.; IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132, Genoa-Italy
| | - Paolo Malatesta
- Department of Experimental Medicine (DiMES), University of Genoa, Leon Battista Alberti 2, 16132, Genoa-Italy.; IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132, Genoa-Italy
| |
Collapse
|
5
|
Andrzejewska A, Nowakowski A, Janowski M, Bulte JWM, Gilad AA, Walczak P, Lukomska B. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 2015; 10:5543-59. [PMID: 26366076 PMCID: PMC4562754 DOI: 10.2147/ijn.s83557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff WM Bulte
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Assaf A Gilad
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice. Appl Environ Microbiol 2015; 81:5344-9. [PMID: 26025906 DOI: 10.1128/aem.01042-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria are found in the gastrointestinal tract of mammals and have received tremendous attention due to their health-promoting properties. We report the development of two dual-color luciferase-producing Lactobacillus (Lb.) plantarum and Lactococcus (Lc.) lactis strains for noninvasive simultaneous tracking in the mouse gastrointestinal tract. We previously described the functional expression of the red luciferase mutant (CBRluc) from Pyrophorus plagiophthalamus in Lb. plantarum NCIMB8826 and Lc. lactis MG1363 (C. Daniel, S. Poiret, V. Dennin, D. Boutillier, and B. Pot, Appl Environ Microbiol 79:1086-1094, 2013, http://dx.doi.org/10.1128/AEM.03221-12). In this study, we determined that CBRluc is a better-performing luciferase for in vivo localization of both lactic acid bacteria after oral administration than the green click beetle luciferase mutant construct developed in this study. We further established the possibility to simultaneously detect red- and green-emitting lactic acid bacteria by dual-wavelength bioluminescence imaging in combination with spectral unmixing. The difference in spectra of light emission by the red and green click beetle luciferase mutants and dual bioluminescence detection allowed in vitro and in vivo quantification of the red and green emitted signals; thus, it allowed us to monitor the dynamics and fate of the two bacterial populations simultaneously. Persistence and viability of both strains simultaneously administered to mice in different ratios was studied in vivo in anesthetized mice and ex vivo in mouse feces. The application of dual-luciferase-labeled bacteria has considerable potential to simultaneously study the interactions and potential competitions of different targeted bacteria and their hosts.
Collapse
|