1
|
Hoshida H, Kagawa S, Ogami K, Akada R. Anoxia-induced mitophagy in the yeast Kluyveromyces marxianus. FEMS Yeast Res 2021; 20:5932265. [PMID: 33130889 DOI: 10.1093/femsyr/foaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Kluyveromyces marxianus is a thermotolerant, ethanol-producing yeast that requires oxygen for efficient ethanol fermentation. Under anaerobic conditions, glucose consumption and ethanol production are retarded, suggesting that oxygen affects the metabolic state of K. marxianus. Mitochondria require oxygen to function, and their forms and number vary according to environmental conditions. In this study, the effect of anoxia on mitochondrial behavior in K. marxianus was examined. Under aerobic growth conditions, mitochondria-targeted GFP exhibited a tubular and dotted localization, representing a typical mitochondrial morphology, but under anaerobic conditions, GFP localized in vacuoles, suggesting that mitophagy occurs under anaerobic conditions. To confirm mitophagy induction, the ATG32, ATG8, ATG11 and ATG19 genes were disrupted. Vacuolar localization of mitochondria-targeted GFP under anaerobic conditions was interrupted in the Δatg32 and Δatg8 strains but not the Δatg11 and Δatg19 strains. Electron microscopy revealed mitochondria-like membrane components in the vacuoles of wild-type cells grown under anaerobic conditions. Quantitative analyses using mitochondria-targeted Pho8 demonstrated that mitophagy was induced in K. marxianus by anoxia but not nitrogen starvation. To the best of our knowledge, this is the first demonstration of anoxia-induced mitophagy in yeasts.
Collapse
Affiliation(s)
- Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8315, Japan.,Yamaguchi University Biomedical Engineering Center, Ube 755-8611, Japan
| | - Shota Kagawa
- Division of Applied Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan
| | - Kentaro Ogami
- Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8315, Japan.,Yamaguchi University Biomedical Engineering Center, Ube 755-8611, Japan
| |
Collapse
|
2
|
Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing. Mol Biotechnol 2018; 60:92-99. [PMID: 29230626 DOI: 10.1007/s12033-017-0050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products produced with this method were successfully applied in seamless genome editing. The fusion of two fragments by this method takes less than 0.5 day. The method is expected to facilitate various kinds of complex genetic engineering projects with enhanced efficiency.
Collapse
|
3
|
Nakamura M, Suzuki A, Akada J, Tomiyoshi K, Hoshida H, Akada R. End Joining-Mediated Gene Expression in Mammalian Cells Using PCR-Amplified DNA Constructs that Contain Terminator in Front of Promoter. Mol Biotechnol 2016; 57:1018-29. [PMID: 26350674 DOI: 10.1007/s12033-015-9890-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan.
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan.
| | - Ayako Suzuki
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | - Junko Akada
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, 879-5503, Japan
| | - Keisuke Tomiyoshi
- Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | - Hisashi Hoshida
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan
| | - Rinji Akada
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan.
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan.
| |
Collapse
|
4
|
Nakamura M, Suzuki A, Akada J, Yarimizu T, Iwakiri R, Hoshida H, Akada R. A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells. Mol Biotechnol 2016; 57:767-80. [PMID: 25997599 DOI: 10.1007/s12033-015-9870-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan,
| | | | | | | | | | | | | |
Collapse
|
5
|
Screening of accurate clones for gene synthesis in yeast. J Biosci Bioeng 2015; 119:251-9. [DOI: 10.1016/j.jbiosc.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022]
|