1
|
Tran HT, Lucas MS, Ishikawa T, Shahmoradian SH, Padeste C. A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging. Front Neurosci 2021; 15:726763. [PMID: 34566569 PMCID: PMC8455873 DOI: 10.3389/fnins.2021.726763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.
Collapse
Affiliation(s)
- Hung Tri Tran
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
2
|
Prabhakar N, Belevich I, Peurla M, Heiligenstein X, Chang HC, Sahlgren C, Jokitalo E, Rosenholm JM. Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes. NANOMATERIALS 2020; 11:nano11010014. [PMID: 33374705 PMCID: PMC7822478 DOI: 10.3390/nano11010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023]
Abstract
Three-dimensional correlative light and electron microscopy (3D CLEM) is attaining popularity as a potential technique to explore the functional aspects of a cell together with high-resolution ultrastructural details across the cell volume. To perform such a 3D CLEM experiment, there is an imperative requirement for multi-modal probes that are both fluorescent and electron-dense. These multi-modal probes will serve as landmarks in matching up the large full cell volume datasets acquired by different imaging modalities. Fluorescent nanodiamonds (FNDs) are a unique nanosized, fluorescent, and electron-dense material from the nanocarbon family. We hereby propose a novel and straightforward method for executing 3D CLEM using FNDs as multi-modal landmarks. We demonstrate that FND is biocompatible and is easily identified both in living cell fluorescence imaging and in serial block-face scanning electron microscopy (SB-EM). We illustrate the method by registering multi-modal datasets.
Collapse
Affiliation(s)
- Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence:
| | - Ilya Belevich
- Electron Microscopy Unit, Helsinki Institute of Life Science—Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (I.B.); (E.J.)
| | - Markus Peurla
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
- Cancer Research Laboratory FICAN West, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan;
| | - Cecilia Sahlgren
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Eija Jokitalo
- Electron Microscopy Unit, Helsinki Institute of Life Science—Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (I.B.); (E.J.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| |
Collapse
|
3
|
Kiewisz R, Müller-Reichert T, Fabig G. High-throughput screening of mitotic mammalian cells for electron microscopy using classic histological dyes. Methods Cell Biol 2020; 162:151-170. [PMID: 33707011 DOI: 10.1016/bs.mcb.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a new workflow that allows screening and selection of staged mammalian cells in mitosis prior to subsequent electron microscopy. We mainly describe four improved steps of specimen preparation. Firstly, we describe a method to efficiently enrich mammalian cells and attach them to sapphire discs; secondly, we report on the use of 3D-printed containers to seed cells on coated sapphire discs for high-pressure freezing; thirdly, we take advantage of a specimen carrier that allows for an upside-down placing of sapphire discs without a second carrier or spacer ring to close the "sandwich"; and fourthly, we use histological dyes to stain DNA/chromatin during freeze-substitution. Out of 14 tested histological dyes, we routinely use four of them for visual inspection of mitotic cells by light microscopy. Applying this streamlined workflow, HeLa cells at different stages of mitosis can be selected for further ultrastructural analysis. The practical aspects of this approach will be discussed herein.
Collapse
Affiliation(s)
- Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
5
|
Dinoflagellate nucleus contains an extensive endomembrane network, the nuclear net. Sci Rep 2019; 9:839. [PMID: 30696854 PMCID: PMC6351617 DOI: 10.1038/s41598-018-37065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Dinoflagellates are some of the most common eukaryotic cells in the ocean, but have very unusual nuclei. Many exhibit a form of closed mitosis (dinomitosis) wherein the nuclear envelope (NE) invaginates to form one or more trans-nuclear tunnels. Rather than contact spindles directly, the chromatids then bind to membrane-based kinetochores on the NE. To better understand these unique mitotic features, we reconstructed the nuclear architecture of Polykrikos kofoidii in 3D using focused ion beam scanning electron microscopy (FIB-SEM) in conjunction with high-pressure freezing, freeze-substitution, TEM, and confocal microscopy. We found that P. kofoidii possessed six nuclear tunnels, which were continuous with a reticulating network of membranes that has thus far gone unnoticed. These membranous extensions interconnect the six tunnels while ramifying throughout the nucleus to form a “nuclear net.” To our knowledge, the nuclear net is the most elaborate endomembrane structure described within a nucleus. Our findings demonstrate the utility of tomographic approaches for detecting 3D membrane networks and show that nuclear complexity has been underestimated in Polykrikos kofoidii and, potentially, in other dinoflagellates.
Collapse
|
6
|
Burel A, Lavault MT, Chevalier C, Gnaegi H, Prigent S, Mucciolo A, Dutertre S, Humbel BM, Guillaudeux T, Kolotuev I. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 2018; 145:dev.160879. [PMID: 29802150 DOI: 10.1242/dev.160879] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Using electron microscopy to localize rare cellular events or structures in complex tissue is challenging. Correlative light and electron microscopy procedures have been developed to link fluorescent protein expression with ultrastructural resolution. Here, we present an optimized scanning electron microscopy (SEM) workflow for volumetric array tomography for asymmetric samples and model organisms (Caenorhabditis elegans, Drosophila melanogaster, Danio rerio). We modified a diamond knife to simplify serial section array acquisition with minimal artifacts. After array acquisition, the arrays were transferred to a glass coverslip or silicon wafer support. Using light microscopy, the arrays were screened rapidly for initial recognition of global anatomical features (organs or body traits). Then, using SEM, an in-depth study of the cells and/or organs of interest was performed. Our manual and automatic data acquisition strategies make 3D data acquisition and correlation simpler and more precise than alternative methods. This method can be used to address questions in cell and developmental biology that require the efficient identification of a labeled cell or organelle.
Collapse
Affiliation(s)
- Agnes Burel
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | | | | | | | - Sylvain Prigent
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | - Antonio Mucciolo
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Bruno M Humbel
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Irina Kolotuev
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France .,University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Russell MRG, Lerner TR, Burden JJ, Nkwe DO, Pelchen-Matthews A, Domart MC, Durgan J, Weston A, Jones ML, Peddie CJ, Carzaniga R, Florey O, Marsh M, Gutierrez MG, Collinson LM. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. J Cell Sci 2017; 130:278-291. [PMID: 27445312 PMCID: PMC5394779 DOI: 10.1242/jcs.188433] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research.
Collapse
Affiliation(s)
- Matthew R G Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thomas R Lerner
- Host-pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - David O Nkwe
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Annegret Pelchen-Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin L Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maximiliano G Gutierrez
- Host-pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Bykov YS, Cortese M, Briggs JAG, Bartenschlager R. Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett 2016; 590:1877-95. [PMID: 27008928 DOI: 10.1002/1873-3468.12153] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Electron microscopy (EM) is an invaluable tool to study the interactions of viruses with cells, and the ultrastructural changes induced in host cells by virus infection. Light microscopy (LM) is a complementary tool with the potential to locate rare events, label specific components, and obtain dynamic information. The combination of LM and EM in correlative light and electron microscopy (CLEM) is particularly powerful. It can be used to complement a static EM image with dynamic data from live imaging, identify the ultrastructure observed in LM, or, conversely, provide molecular specificity data for a known ultrastructure. Here, we describe methods and strategies for CLEM, discuss their advantages and limitations, and review applications of CLEM to study virus-host interactions.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| |
Collapse
|
9
|
Mourik MJ, Faas FGA, Zimmermann H, Eikenboom J, Koster AJ. Towards the imaging of Weibel-Palade body biogenesis by serial block face-scanning electron microscopy. J Microsc 2015; 259:97-104. [PMID: 25644989 PMCID: PMC4670698 DOI: 10.1111/jmi.12222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022]
Abstract
Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.
Collapse
Affiliation(s)
- M J Mourik
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - F G A Faas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - J Eikenboom
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Correlative video-light–electron microscopy: development, impact and perspectives. Histochem Cell Biol 2014; 142:133-8. [DOI: 10.1007/s00418-014-1249-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
|