1
|
Neill B, Romero AR, Fenton OS. Advances in Nonviral mRNA Delivery Materials and Their Application as Vaccines for Melanoma Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4894-4913. [PMID: 37930174 PMCID: PMC11220486 DOI: 10.1021/acsabm.3c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising platforms for cancer immunotherapy because of their potential to encode for a variety of tumor antigens, high tolerability, and capacity to induce strong antitumor immune responses. However, the clinical translation of mRNA cancer vaccines can be hindered by the inefficient delivery of mRNA in vivo. In this review, we provide an overview of mRNA cancer vaccines by discussing their utility in treating melanoma. Specifically, we begin our review by describing the barriers that can impede mRNA delivery to target cells. We then review native mRNA structure and discuss various modification methods shown to enhance mRNA stability and transfection. Next, we outline the advantages and challenges of three nonviral carrier platforms (lipid nanoparticles, polymeric nanoparticles, and lipopolyplexes) frequently used for mRNA delivery. Last, we summarize preclinical and clinical studies that have investigated nonviral mRNA vaccines for the treatment of melanoma. In writing this review, we aim to highlight innovative nonviral strategies designed to address mRNA delivery challenges while emphasizing the exciting potential of mRNA vaccines as next-generation therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Bevin Neill
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana Retamales Romero
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
2
|
Whitworth IT, Henke KB, Yang B, Scalf M, Frey BL, Jarrard DF, Smith LM. Elucidating the RNA-Protein Interactomes of Target RNAs in Tissue. Anal Chem 2023; 95:7087-7092. [PMID: 37093976 PMCID: PMC10234431 DOI: 10.1021/acs.analchem.2c05635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-protein interactions are key to many aspects of cellular homeostasis and their identification is important to understanding cellular function. Multiple strategies have been developed for the RNA-centric characterization of RNA-protein complexes. However, these studies have all been done in immortalized cell lines that do not capture the complexity of heterogeneous tissue samples. Here, we develop hybridization purification of RNA-protein complexes followed by mass spectrometry (HyPR-MS) for use in tissue samples. We isolated both polyadenylated RNA and the specific long noncoding RNA MALAT1 and characterized their protein interactomes. These results demonstrate the feasibility of HyPR-MS in tissue for the multiplexed characterization of specific RNA-protein complexes.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Katherine B Henke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Bing Yang
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - David F Jarrard
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin 53705, United States
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021; 179:114002. [PMID: 34653534 PMCID: PMC9418126 DOI: 10.1016/j.addr.2021.114002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.
Collapse
Affiliation(s)
- Oleksandra Chabanovska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany,Corresponding author at: Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| |
Collapse
|
4
|
Kandhari N, Kraupner-Taylor CA, Harrison PF, Powell DR, Beilharz TH. The Detection and Bioinformatic Analysis of Alternative 3 ' UTR Isoforms as Potential Cancer Biomarkers. Int J Mol Sci 2021; 22:5322. [PMID: 34070203 PMCID: PMC8158509 DOI: 10.3390/ijms22105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing methodologies, both experimental and computational, that have been applied to support the use of alternative polyadenylation as cancer biomarkers.
Collapse
Affiliation(s)
- Nitika Kandhari
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Calvin A. Kraupner-Taylor
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Paul F. Harrison
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - David R. Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - Traude H. Beilharz
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| |
Collapse
|
5
|
Zagore LL, Sweet TJ, Hannigan MM, Weyn-Vanhentenryck SM, Jobava R, Hatzoglou M, Zhang C, Licatalosi DD. DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. Cell Rep 2019; 25:1225-1240.e6. [PMID: 30380414 PMCID: PMC6878787 DOI: 10.1016/j.celrep.2018.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 10/01/2018] [Indexed: 01/25/2023] Open
Abstract
The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3′ UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival. Combining transgenic mice, FACS, and multiple RNA-profiling methods, Zagore et al. show that DAZL binds thousands of mRNAs via GUU sites upstream of polyA tails. Loss of DAZL results in decreased mRNA levels for a network of genes that are essential for germ cell proliferation and differentiation.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|