1
|
Wang S, Xue M, He C, Shen D, Jiang C, Zhao H, Niu D. AtMC1 Associates With LSM4 to Regulate Plant Immunity Through Modulating Pre-mRNA Splicing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1423-1432. [PMID: 34515495 DOI: 10.1094/mpmi-07-21-0197-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternative splicing of pre-mRNAs is an important gene regulatory mechanism shaping the transcriptome. AtMC1 is an Arabidopsis thaliana type I metacaspase that positively regulates the hypersensitive response. Here, we found that AtMC1 is involved in the regulation of plant immunity to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and is physically associated with Sm-like4 (LSM4), which is involved in pre-mRNA splicing. AtMC1 and LSM4 protein levels both increased with their coexpression as compared with their separate expression in vivo. Like AtMC1, LSM4 negatively regulates plant immunity to P. syringae pv. tomato DC3000 infection. By RNA sequencing, AtMC1 was shown to modulate the splicing of many pre-mRNAs, including 4CL3, which is a negative regulator of plant immunity. Thus, AtMC1 plays a regulatory role in pre-mRNA splicing, which might contribute to AtMC1-mediated plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shune Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Mei Xue
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chan He
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Thompson CM, Cannon A, West S, Ghersi D, Atri P, Bhatia R, Smith L, Rachagani S, Wichman C, Kumar S, Batra SK. Mucin Expression and Splicing Determine Novel Subtypes and Patient Mortality in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2021; 27:6787-6799. [PMID: 34615717 DOI: 10.1158/1078-0432.ccr-21-1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy demonstrating aberrant and progressive expression of mucins. The contribution of individual mucins has been extensively investigated in PDAC; however, comprehensive mucin profiling including splice variants in PDAC tumors has not been reported. EXPERIMENTAL DESIGN Using publicly available RNA sequencing (RNA-seq) datasets, we assess the expression of mucin family members and their splice variants (SV) in PDAC tumor samples for the first time. Mucin SVs that are correlated with PDAC patient survival are validated in a cohort of patient tumor samples. Further, we use computational methods to derive novel pancreatic tumor subtypes using mucin expression signatures and their associated activated pathways. RESULTS Principal component analysis identified four novel mucin-based PDAC subtypes. Pathway analysis implicated specific biological signatures for each subtype, labeled (i) immune activated, (ii) progressive, (iii) pancreatitis-initiated, and (iv) anti-inflammatory/PanIN-initiated. Assessing mucin SVs, significantly longer survival is observed with higher expression of 4 MUC1 and 1 MUC13 SVs, whereas patients expressing 2 MUC4 and 1 MUC16 SVs had shorter survival. Using a whole-transcriptome correlation, a three-gene panel, including ESRP2, PTK6, and MAGEH1, is designated to assess PDAC tumor sample cellularity by PCR. One MUC4 SV and one MUC13 SV are quantified in a separate PDAC patient cohort, and their effects on survival are experimentally validated. CONCLUSIONS Altogether, we demonstrate the unique expression pattern of mucins, four mucin-based PDAC subtypes, and the contribution of MUC1, MUC4, and MUC16 SVs in PDAC patient survival.
Collapse
Affiliation(s)
- Christopher M Thompson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andrew Cannon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sean West
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska, Omaha, Nebraska
| | - Dario Ghersi
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska, Omaha, Nebraska
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lynette Smith
- Department of Biostatistics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Satyayanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher Wichman
- Department of Biostatistics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
3
|
Shao XY, Dong J, Zhang H, Wu YS, Zheng L. Prognostic Value and Potential Role of Alternative mRNA Splicing Events in Cervical Cancer. Front Genet 2020; 11:726. [PMID: 32793282 PMCID: PMC7394696 DOI: 10.3389/fgene.2020.00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence suggests that aberrant alternative splicing (AS) events are associated with progression of cancer. This study evaluated the prognostic value and clarify the role of AS events in cervical cancer (CC). Methods Based on RNA-seq AS event data and clinical information of CC patients in The Cancer Genome Atlas (TCGA) database, we sought to identify prognosis-related AS events in this setting. We selected several survival-associated AS events to construct a prognostic predictor for CC through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Moreover, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed on genes with prognosis-related AS events and constructed an AS-splicing factors (SFs) regulatory network. Results 2770 AS events were significantly correlated with overall survival (OS). The area under the curve (AUC) values of receiver-operator characteristic curve (ROC) for the final prognostic predictor were 0.926, 0.946 and 0.902 at 3, 5, and 10 years, respectively. These values indicated efficiency in prognostic risk stratification for patients with CC. The final prognostic predictor was an independent predictor of OS (HR: 1.24; 95% CI: 1.020–1.504; P < 0.05). The AS-SFs correlation network may reveal an underlying regulatory mechanism of AS events. Conclusion AS events are essential participants in the prognosis of CC and hold great potentials for the prognostic stratification and development of treatment strategy.
Collapse
Affiliation(s)
- Xiang-Yang Shao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Dong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Huang ZG, He RQ, Mo ZN. Prognostic value and potential function of splicing events in prostate adenocarcinoma. Int J Oncol 2018; 53:2473-2487. [PMID: 30221674 PMCID: PMC6203144 DOI: 10.3892/ijo.2018.4563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is one of the most common types of malignancy in males and at present, effective prognostic indicators are limited. The development of PRAD has been associated with abnormalities in alternative splicing (AS), a requisite biological process of gene expression in eukaryotic cells; however, the prognostic value of AS products and splicing events remains to be elucidated. In the present study, the data of splicing events and the clinical information of PRAD patients were obtained from The Cancer Genome Atlas (TCGA)SpliceSeq and TCGA databases, respectively. A prognostic index (PI) was generated from disease-free survival-associated splicing events (DFS-SEs), which were identified by univariate/multivariate Cox regression analysis. A total of 6,909 DFS-SEs were identified in PRAD. The corresponding genes for the DFS-SEs were significantly enriched in mitochondria and their associated pathways according to Gene Ontology annotation and in the pathways of fatty acid metabolism, oxidative phosphorylation and Huntington's disease according to a Kyoto Encyclopedia of Genes and Genomes pathway analysis. The PI for mutually exclusive exons had the greatest ability to predict the probability of five-year disease-free survival of patients with PRAD, with an area under the time-dependent receiver-operating characteristic curve of 0.7606. Patients with PRAD, when divided into a 'low' and a 'high' group based on their median PI for exon skip values, exhibited a marked difference in disease-free survival (low vs. high, 3,588.45±250.51 vs. 1,531.08±136.50 days; P=7.43×10−9). A correlation network between DFS-SEs of splicing factors and non-splicing factors was constructed to determine the potential mechanisms in PRAD, which included the potential regulatory interaction between the splicing event of splicing factor RNA binding motif protein 5-alternate terminator (AT)-64957 and the splicing event of non-splicing factor heterochromatin protein 1 binding protein 3-AT-939. In conclusion, the PIs derived from DFS-SEs are valuable prognostic factors for patients with PRAD, and the function of splicing events in PRAD deserves further exploration.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zeng-Nan Mo
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
5
|
Strand-Specific Dual RNA Sequencing of Bronchial Epithelial Cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions. J Virol 2018; 92:JVI.00518-18. [PMID: 29976658 DOI: 10.1128/jvi.00518-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA sequencing (RNA-seq) of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity.IMPORTANCE The use of massively parallel RNA sequencing (RNA-seq) has revealed insights into human and pathogen genomes and their evolution. Dual RNA-seq allows simultaneous dissection of host and pathogen genomes and strand-specific RNA-seq provides information about the polarity of the RNA. This is important in the case of negative-strand RNA viruses like influenza virus, which generate positive (complementary and mRNA) and negative-strand RNAs (genome) that differ in their potential to trigger innate immunity. Here, we characterize interactions between human bronchial epithelial cells and three influenza A/H3N2 strains using strand-specific dual RNA-seq. We focused on this subtype because of its epidemiological importance in causing significant morbidity and mortality during influenza epidemics. We report novel elements that differ between seasonal and laboratory strains highlighting the complexity of the host-virus interplay at the RNA level.
Collapse
|
6
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
7
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy. PLoS Genet 2016; 12:e1006316. [PMID: 27681373 PMCID: PMC5082313 DOI: 10.1371/journal.pgen.1006316] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/23/2016] [Indexed: 01/23/2023] Open
Abstract
Alternative splicing is a regulated process that results in expression of
specific mRNA and protein isoforms. Alternative splicing factors determine the
relative abundance of each isoform. Here we focus on MBNL1, a splicing factor
misregulated in the disease myotonic dystrophy. By altering the concentration of
MBNL1 in cells across a broad dynamic range, we show that different splicing
events require different amounts of MBNL1 for half-maximal response, and respond
more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess
how cis-elements mediate the MBNL1 dose-dependent splicing
response. A framework was developed to estimate MBNL concentration using
splicing responses alone, validated in the cell-based model, and applied to
myotonic dystrophy patient muscle. Using this framework, we evaluated the
ability of individual and combinations of splicing events to predict functional
MBNL concentration in human biopsies, as well as their performance as biomarkers
to assay mild, moderate, and severe cases of DM. Our studies provide insight into the mechanisms of myotonic dystrophy, the most
common adult form of muscular dystrophy. In this disease, a family of RNA
binding proteins is sequestered by toxic RNA, which leads to mis-regulation and
disease symptoms. We have created a cellular model with one of these family
members to study how these RNA binding proteins function in the absence of the
toxic RNA. In parallel, we analyzed transcriptomic data from over 50 individuals
(44 affected by myotonic dystrophy) with a range of disease severity. The
results from the transcriptomic data provide a rational approach to select
biomarkers for clinical research and therapeutic trials.
Collapse
|