1
|
Zonca L, Bellier FC, Milior G, Aymard P, Visser J, Rancillac A, Rouach N, Holcman D. Unveiling the functional connectivity of astrocytic networks with AstroNet, a graph reconstruction algorithm coupled to image processing. Commun Biol 2025; 8:114. [PMID: 39856404 PMCID: PMC11759710 DOI: 10.1038/s42003-024-07390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Astrocytes form extensive networks with diverse calcium activity, yet the organization and connectivity of these networks across brain regions remain largely unknown. To address this, we developed AstroNet, a data-driven algorithm that uses two-photon calcium imaging to map temporal correlations in astrocyte activation. By organizing individual astrocyte activation events chronologically, our method reconstructs functional networks and extracts local astrocyte correlations. We create a graph of the astrocyte network by tallying direct co-activations between pairs of cells along these activation pathways. Applied to the CA1 hippocampus and motor cortex, AstroNet reveals notable differences: astrocytes in the hippocampus display stronger connectivity, while cortical astrocytes form sparser networks. In both regions, smaller, tightly connected sub-networks are embedded within a larger, loosely connected structure. This method not only identifies astrocyte activation paths and connectivity but also reveals distinct, region-specific network patterns, providing new insights into the functional organization of astrocytic networks in the brain.
Collapse
Affiliation(s)
- L Zonca
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - F C Bellier
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - G Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - P Aymard
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
| | - J Visser
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - A Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - N Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - D Holcman
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France.
| |
Collapse
|
2
|
Maas DA, Manot-Saillet B, Bun P, Habermacher C, Poilbout C, Rusconi F, Angulo MC. Versatile and automated workflow for the analysis of oligodendroglial calcium signals. Cell Mol Life Sci 2024; 81:15. [PMID: 38194116 PMCID: PMC11073395 DOI: 10.1007/s00018-023-05065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.
Collapse
Affiliation(s)
- Dorien A Maas
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Blandine Manot-Saillet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "NeurImag Platform", 75014, Paris, France
| | - Chloé Habermacher
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
- SynapCell, Bâtiment Synergy Zac Isiparc, 38330, Saint Ismier, France
| | - Corinne Poilbout
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Filippo Rusconi
- IDEEV, GQE, Université Paris-Saclay, CNRS, INRAE, AgroParisTech, 12, Route 128, 91272, Gif-sur-Yvette, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, 75006, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France.
- GHU PARIS Psychiatrie and Neurosciences, 75014, Paris, France.
| |
Collapse
|
3
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
4
|
Covelo A, Badoual A, Denizot A. Reinforcing Interdisciplinary Collaborations to Unravel the Astrocyte "Calcium Code". J Mol Neurosci 2022; 72:1443-1455. [PMID: 35543801 PMCID: PMC9293817 DOI: 10.1007/s12031-022-02006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we present the major insights from and challenges faced in the acquisition, analysis and modeling of astrocyte calcium activity, aiming at bridging the gap between those fields to crack the complex astrocyte "Calcium Code". We then propose strategies to reinforce interdisciplinary collaborative projects to unravel astrocyte function in health and disease.
Collapse
Affiliation(s)
- Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215, NeuroCentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, Bordeaux, 33077, France
| | - Anaïs Badoual
- SERPICO Project-Team, Inria Centre Rennes-Bretagne Atlantique, Rennes Cedex, 35042, France
- SERPICO/STED Team, UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Universités, Paris, 75005, France
| | - Audrey Denizot
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna, 904-0495, Japan.
| |
Collapse
|
5
|
Müller FE, Cherkas V, Stopper G, Caudal LC, Stopper L, Kirchhoff F, Henneberger C, Ponimaskin EG, Zeug A. Elucidating regulators of astrocytic Ca 2+ signaling via multi-threshold event detection (MTED). Glia 2021; 69:2798-2811. [PMID: 34388285 DOI: 10.1002/glia.24070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
Recent achievements in indicator optimization and imaging techniques promote the advancement of functional imaging to decipher complex signaling processes in living cells, such as Ca2+ activity patterns. Astrocytes are important regulators of the brain network and well known for their highly complex morphology and spontaneous Ca2+ activity. However, the astrocyte community is lacking standardized methods to analyze and interpret Ca2+ activity recordings, hindering global comparisons. Here, we present a biophysically-based analytical concept for deciphering the complex spatio-temporal changes of Ca2+ biosensor fluorescence for understanding the underlying signaling mechanisms. We developed a pixel-based multi-threshold event detection (MTED) analysis of multidimensional data, which accounts for signal strength as an additional signaling dimension and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of fluorescence signals. MTED was validated by analyzing astrocytic Ca2+ activity across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. We identified extended Ca2+ activity at 25°C compared to 37°C physiological body temperature and dissected how neuronal activity shapes long-lasting astrocytic Ca2+ activity. Our MTED strategy, as a parameter-free approach, is easily transferrable to other fluorescent indicators and biosensors and embraces the additional dimensionality of signaling activity strength. It will also advance the definition of standardized procedures and parameters to improve comparability of research data and reports.
Collapse
Affiliation(s)
| | - Volodymyr Cherkas
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | | | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|