1
|
Raja S, Hamouda AEI, de Toledo MAS, Hu C, Bernardo MP, Schalla C, Leite LSF, Buhl EM, Dreschers S, Pich A, Zenke M, Mattoso LHC, Sechi A. Functionalized Cellulose Nanocrystals for Cellular Labeling and Bioimaging. Biomacromolecules 2020; 22:454-466. [PMID: 33284004 DOI: 10.1021/acs.biomac.0c01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.
Collapse
Affiliation(s)
- Sebastian Raja
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil.,Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Ahmed E I Hamouda
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Marcelo A S de Toledo
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Chaolei Hu
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Marcela P Bernardo
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil.,Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Liliane S F Leite
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Stephan Dreschers
- Klinik für Kinder- und Jugendmedizin, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Luiz H C Mattoso
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil
| | - Antonio Sechi
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| |
Collapse
|