1
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:96-118. [PMID: 38689162 PMCID: PMC11772491 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
2
|
Joya A, Plaza-García S, Padro D, Aguado L, Iglesias L, Garbizu M, Gómez-Vallejo V, Laredo C, Cossío U, Torné R, Amaro S, Planas AM, Llop J, Ramos-Cabrer P, Justicia C, Martín A. Multimodal imaging of the role of hyperglycemia following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:726-741. [PMID: 37728631 PMCID: PMC11197138 DOI: 10.1177/0271678x231197946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 09/21/2023]
Abstract
Hyperglycemia has been linked to worsening outcomes after subarachnoid hemorrhage (SAH). Nevertheless, the mechanisms involved in the pathogenesis of SAH have been scarcely evaluated so far. The role of hyperglycemia was assessed in an experimental model of SAH by T2 weighted, dynamic contrast-enhanced magnetic resonance imaging (T2W and DCE-MRI), [18F]BR-351 PET imaging and immunohistochemistry. Measures included the volume of bleeding, the extent of cerebral infarction and brain edema, blood brain barrier disruption (BBBd), neutrophil infiltration and matrix metalloprotease (MMP) activation. The neurofunctional outcome, neurodegeneration and myelinization were also investigated. The induction of hyperglycemia increased mortality, the size of the ischemic lesion, brain edema, neurodegeneration and worsened neurological outcome during the first 3 days after SAH in rats. In addition, these results show for the first time the exacerbating effect of hyperglycemia on in vivo MMP activation, Intercellular Adhesion Molecule 1 (ICAM-1) expression and neutrophil infiltration together with increased BBBd, bleeding volume and fibrinogen accumulation at days 1 and 3 after SAH. Notably, these data provide valuable insight into the detrimental effect of hyperglycemia on early BBB damage mediated by neutrophil infiltration and MMP activation that could explain the worse prognosis in SAH.
Collapse
Affiliation(s)
- Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Maider Garbizu
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Carlos Laredo
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ramon Torné
- Institute of Neuroscience, Neurosurgery Department, Hospital Clinic of Barcelona, Spain
| | - Sergio Amaro
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Anna M Planas
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carles Justicia
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
MacLean MA, Muradov JH, Greene R, Van Hameren G, Clarke DB, Dreier JP, Okonkwo DO, Friedman A. Memantine inhibits cortical spreading depolarization and improves neurovascular function following repetitive traumatic brain injury. SCIENCE ADVANCES 2023; 9:eadj2417. [PMID: 38091390 PMCID: PMC10848720 DOI: 10.1126/sciadv.adj2417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Cortical spreading depolarization (CSD) is a promising target for neuroprotective therapy in traumatic brain injury (TBI). We explored the effect of NMDA receptor antagonism on electrically triggered CSDs in healthy and brain-injured animals. Rats received either one moderate or four daily repetitive mild closed head impacts (rmTBI). Ninety-three animals underwent craniectomy with electrocorticographic (ECoG) and local blood flow monitoring. In brain-injured animals, ketamine or memantine inhibited CSDs in 44 to 88% and 50 to 67% of cases, respectively. Near-DC/AC-ECoG amplitude was reduced by 44 to 75% and 52 to 67%, and duration by 39 to 87% and 61 to 78%, respectively. Daily memantine significantly reduced spreading depression and oligemia following CSD. Animals (N = 31) were randomized to either memantine (10 mg/kg) or saline with daily neurobehavioral testing. Memantine-treated animals had higher neurological scores. We demonstrate that memantine improved neurovascular function following CSD in sham and brain-injured animals. Memantine also prevented neurological decline in a blinded, preclinical randomized rmTBI trial.
Collapse
Affiliation(s)
- Mark A. MacLean
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jamil H. Muradov
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Ryan Greene
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Gerben Van Hameren
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - David B. Clarke
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charite University, Berlin, Germany
| | - David O. Okonkwo
- Division of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alon Friedman
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
5
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Yan J, Li W, Zhou C, Wu N, Yang X, Pan Q, He T, Wu Y, Guo Z, Xia Y, Sun X, Cheng C. Dynamic Measurements of Cerebral Blood Flow Responses to Cortical Spreading Depolarization in the Murine Endovascular Perforation Subarachnoid Hemorrhage Model. Transl Stroke Res 2022:10.1007/s12975-022-01052-1. [PMID: 35749033 DOI: 10.1007/s12975-022-01052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Delayed cerebral ischemia (DCI) is the most severe complication after subarachnoid hemorrhage (SAH), and cortical spreading depolarization (CSD) is believed to play a vital role in it. However, the dynamic changes in cerebral blood flow (CBF) in response to CSD in typical SAH models have not been well investigated. Here, SAH was established in mice with endovascular perforation. Subsequently, the spontaneous CBF dropped instantly and then returned to baseline rapidly. After KCl application to the cortex, subsequent hypoperfusion waves occurred across the groups, while a lower average perfusion level was found in the SAH groups (days 1-7). Moreover, in the SAH groups, the number of CSD decreased within day 7, and the duration and spreading velocity of the CSD increased within day 3 and day 14, respectively. Next, we continuously monitored the local field potential (LFP) in the prefrontal cortex. The results showed that the decrease in the percentage of gamma oscillations lasted throughout the whole process in the SAH group. In the chronic phase after SAH, we found that the mice still had cognitive deficits but experienced no obvious tissue damage. In summary, SAH negatively affects the CBF responses to CSD and the spontaneous LFP activity and causes long-term cognitive deficits in mice. Based on these findings, in the specific phase after SAH, DCI is induced or exacerbated more easily by potential causers of CSD in clinical practice (edema, erythrocytolysis, inflammation), which may lead to neurological deterioration.
Collapse
Affiliation(s)
- Jin Yan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Wenlang Li
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Na Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Xiaomin Yang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Qiuling Pan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Tao He
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Zongduo Guo
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Yongzhi Xia
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
Warner L, Bach-Hagemann A, Albanna W, Clusmann H, Schubert GA, Lindauer U, Conzen-Dilger C. Vascular Reactivity to Hypercapnia Is Impaired in the Cerebral and Retinal Vasculature in the Acute Phase After Experimental Subarachnoid Hemorrhage. Front Neurol 2022; 12:757050. [PMID: 35095718 PMCID: PMC8793938 DOI: 10.3389/fneur.2021.757050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Impaired cerebral blood flow (CBF) regulation, such as reduced reactivity to hypercapnia, contributes to the pathophysiology after aneurysmal subarachnoid hemorrhage (SAH), but temporal dynamics in the acute phase are unknown. Featuring comparable molecular regulation mechanisms, the retinal vessels participate in chronic and subacute stroke- and SAH-associated vessel alterations in patients and can be studied non-invasively. This study is aimed to characterize the temporal course of the cerebral and retinal vascular reactivity to hypercapnia in the acute phase after experimental SAH and compare the potential degree of impairment.Methods: Subarachnoid hemorrhage was induced by injecting 0.5 ml of heparinized autologous blood into the cisterna magna of male Wistar rats using two anesthesia protocols [isoflurane/fentanyl n = 25 (Sham + SAH): Iso—Group, ketamine/xylazine n = 32 (Sham + SAH): K/X—Group]. CBF (laser speckle contrast analysis) and physiological parameters were measured continuously for 6 h. At six predefined time points, hypercapnia was induced by hypoventilation controlled via blood gas analysis, and retinal vessel diameter (RVD) was determined non-invasively.Results: Cerebral reactivity and retinal reactivity in Sham groups were stable with only a slight attenuation after 2 h in RVD of the K/X—Group. In the SAH Iso—Group, cerebral and retinal CO2 reactivity compared to baseline was immediately impaired starting at 30 min after SAH (CBF p = 0.0090, RVD p = 0.0135) and lasting up to 4 h (p = 0.0136, resp. p = 0.0263). Similarly, in the K/X—Group, cerebral CO2 reactivity was disturbed early after SAH (30 min, p = 0.003) albeit showing a recovery to baseline after 2 h while retinal CO2 reactivity was impaired over the whole observation period (360 min, p = 0.0001) in the K/X—Group. After normalization to baseline, both vascular beds showed a parallel behavior regarding the temporal course and extent of impairment.Conclusion: This study provides a detailed temporal analysis of impaired cerebral vascular CO2 reactivity starting immediately after SAH and lasting up to 6 h. Importantly, the retinal vessels participate in these acute changes underscoring the promising role of the retina as a potential non-invasive screening tool after SAH. Further studies will be required to determine the correlation with functional outcomes.
Collapse
Affiliation(s)
- Laura Warner
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Walid Albanna
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gerrit A. Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen-Dilger
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- *Correspondence: Catharina Conzen-Dilger
| |
Collapse
|
8
|
Petzold GC, Dreier JP. Spreading depolarization evoked by endothelin-1 is inhibited by octanol but not by carbenoxolone. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Telles JPM, Welling LC, Coelho ACSDS, Rabelo NN, Teixeira MJ, Figueiredo EG. Cortical spreading depolarization and ketamine: a short systematic review. Neurophysiol Clin 2021; 51:145-151. [PMID: 33610431 DOI: 10.1016/j.neucli.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Cortical spreading depolarization (SD) describes pathological waves characterized by an almost complete sustained depolarization of neurons and astrocytes that spreads throughout the cortex. In this study, we carried out a qualitative review of all available evidence, clinical and preclinical, on the use of ketamine in SD. METHODS We performed a systematic review of Medline, with no restrictions regarding publishing date or language, in search of articles reporting the use of ketamine in SD. The search string was composed of "ketamine," "spreading," "depolarization," and "depression" in both (AND) and (OR) combinations. RESULTS Twenty studies were included in the final synthesis. Many studies showed that ketamine effectively blocks SD in rats, swine, and humans. The first prospective randomized trial was published in 2018. Ten patients with severe traumatic brain injury or subarachnoid hemorrhage were enrolled, and ketamine showed a significant, dose-dependent effect on the reduction of SD. CONCLUSION The available evidence from preclinical studies is helping to translate the role of ketamine in blocking spreading depolarizations to clinical practice, in the settings of migraine with aura, traumatic brain injury, subarachnoid hemorrhage, and hemorrhagic and ischemic stroke. More randomized controlled trials are needed to determine whether interrupting the ketamine-blockable SDs effectively leads to an improvement in outcome and to assess the real occurrence of adverse effects.
Collapse
Affiliation(s)
- João Paulo Mota Telles
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Brazil
| | | | | | - Nícollas Nunes Rabelo
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Brazil
| | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), Brazil.
| |
Collapse
|
10
|
Abstract
Cortical spreading depolarization (CSD) is recognized as a cause of transient neurological symptoms (TNS) in various clinical entities. Although scientific literature has been flourishing in the field of CSD, it remains an underrecognized pathophysiology in clinical practice. The literature evoking CSD in relation to subdural hematoma (SDH) is particularly scarce. Patients with SDH frequently suffer from TNS, most being attributed to seizures despite an atypical semiology, evolution, and therapeutic response. Recent literature has suggested that a significant proportion of those patients' TNS represent the clinical manifestations of underlying CSD. Recently, the term Non-Epileptical Stereoytpical Intermittent Symptoms (NESIS) has been proposed to describe a subgroup of patients presenting with TNS in the context of SDH. Indirect evidence and recent research suggest that the pathophysiology of NESIS could represent the clinical manifestation of CSD. This review should provide a concise yet thorough review of the current state of literature behind the pathophysiology of CSD with a particular focus on recent research and knowledge regarding the presence of CSD in the context of subdural hematoma. Although many questions remain in the evolution of knowledge in this field would likely have significant diagnostic, therapeutic, and prognostic implications.
Collapse
|