1
|
Cintra L, Yanicostas C, Soussi-Yanicostas N, Vianna Maurer-Morelli C. Effects of baicalin pre-treatment on pentylenetetrazole-induced seizures: Insights from zebrafish larvae locomotor behavior and neuronal calcium imaging. Epilepsy Behav 2024; 157:109866. [PMID: 38820680 DOI: 10.1016/j.yebeh.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.
Collapse
Affiliation(s)
- Laís Cintra
- Universidade Estadual de Campinas - Unicamp, School of Medical Science, Department of Translational Medicine, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas
| | - Constantin Yanicostas
- NeuroDiderot, Inserm U1141, Université Paris Cité, Hôpital Robert Debré, Paris, France; Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, Inserm U1141, Université Paris Cité, Hôpital Robert Debré, Paris, France; Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France.
| | - Claudia Vianna Maurer-Morelli
- Universidade Estadual de Campinas - Unicamp, School of Medical Science, Department of Translational Medicine, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas.
| |
Collapse
|
2
|
Shen Y, Chen X, Song Z, Yao H, Han A, Zhang Y, Cai Y, Hu B. MicroRNA-9 promotes axon regeneration of mauthner-cell in zebrafish via her6/ calcium activity pathway. Cell Mol Life Sci 2024; 81:104. [PMID: 38411738 PMCID: PMC10899279 DOI: 10.1007/s00018-024-05117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
MicroRNA (miRNA), functioning as a post-transcriptional regulatory element, plays a significant role in numerous regulatory mechanisms and serves as a crucial intrinsic factor influencing axon regeneration. Prior investigations have elucidated the involvement of miRNA-9 in various processes, however, its specific contribution to axon regeneration in the central nervous system (CNS) remains uncertain. Hence, the zebrafish Mauthner axon regeneration model was employed to manipulate the expression of miRNA-9 in single cells, revealing that upregulation of miRNA-9 facilitated axon regeneration. Additionally, her6, a downstream target gene of miRNA-9, was identified as a novel gene associated with axon regeneration. Suppression of her6 resulted in enhanced Mauthner axon regeneration, as evidenced by the significantly improved regenerative capacity observed in her6 knockout zebrafish. In addition, modulation of her6 expression affects intracellular calcium levels in neurons and promoting her6 expression leads to a decrease in calcium levels in vivo using the new NEMOf calcium indicator. Moreover, the administration of the neural activity activator, pentylenetetrazol (PTZ) partially compensated for the inhibitory effect of her6 overexpression on the calcium level and promoted axon regeneration. Taken together, our study revealed a role for miRNA-9 in the process of axon regeneration in the CNS, which improved intracellular calcium activity and promoted axon regeneration by inhibiting the expression of downstream target gene her6. In our study, miRNA-9 emerged as a novel and intriguing target in the intricate regulation of axon regeneration and offered compelling evidence for the intricate relationship between calcium activity and the facilitation of axon regeneration.
Collapse
Affiliation(s)
- Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Along Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yawen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Cai
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Brehm N, Wenke N, Glessner K, Haehnel-Taguchi M. Physiological responses of mechanosensory systems in the head of larval zebrafish ( Danio rerio). Front Robot AI 2023; 10:1212626. [PMID: 37583713 PMCID: PMC10423815 DOI: 10.3389/frobt.2023.1212626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
The lateral line system of zebrafish consists of the anterior lateral line, with neuromasts distributed on the head, and the posterior lateral line, with neuromasts distributed on the trunk. The sensory afferent neurons are contained in the anterior and posterior lateral line ganglia, respectively. So far, the vast majority of physiological and developmental studies have focused on the posterior lateral line. However, studies that focus on the anterior lateral line, especially on its physiology, are very rare. The anterior lateral line involves different neuromast patterning processes, specific distribution of synapses, and a unique role in behavior. Here, we report our observations regarding the development of the lateral line and analyze the physiological responses of the anterior lateral line to mechanical and water jet stimuli. Sensing in the fish head may be crucial to avoid obstacles, catch prey, and orient in water current, especially in the absence of visual cues. Alongside the lateral line, the trigeminal system, with its fine nerve endings innervating the skin, could contribute to perceiving mechanosensory stimulation. Therefore, we compare the physiological responses of the lateral line afferent neurons to responses of trigeminal neurons and responsiveness of auditory neurons. We show that anterior lateral line neurons are tuned to the velocity of mechanosensory ramp stimulation, while trigeminal neurons either only respond to mechanical step stimuli or fast ramp and step stimuli. Auditory neurons did not respond to mechanical or water jet stimuli. These results may prove to be essential in designing underwater robots and artificial lateral lines, with respect to the spectra of stimuli that the different mechanosensory systems in the larval head are tuned to, and underline the importance and functionality of the anterior lateral line system in the larval fish head.
Collapse
Affiliation(s)
- Nils Brehm
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | - Melanie Haehnel-Taguchi
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
7
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Liu H, Yue Y, Xu Z, Guo L, Wu C, Zhang D, Luo L, Huang W, Chen H, Yang D. mTORC1 signaling pathway regulates tooth repair. Int J Oral Sci 2023; 15:14. [PMID: 36927863 PMCID: PMC10020452 DOI: 10.1038/s41368-023-00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
Tooth germ injury can lead to abnormal tooth development and even tooth loss, affecting various aspects of the stomatognathic system including form, function, and appearance. However, the research about tooth germ injury model on cellular and molecule mechanism of tooth germ repair is still very limited. Therefore, it is of great importance for the prevention and treatment of tooth germ injury to study the important mechanism of tooth germ repair by a tooth germ injury model. Here, we constructed a Tg(dlx2b:Dendra2-NTR) transgenic line that labeled tooth germ specifically. Taking advantage of the NTR/Mtz system, the dlx2b+ tooth germ cells were depleted by Mtz effectively. The process of tooth germ repair was evaluated by antibody staining, in situ hybridization, EdU staining and alizarin red staining. The severely injured tooth germ was repaired in several days after Mtz treatment was stopped. In the early stage of tooth germ repair, the expression of phosphorylated 4E-BP1 was increased, indicating that mTORC1 is activated. Inhibition of mTORC1 signaling in vitro or knockdown of mTORC1 signaling in vivo could inhibit the repair of injured tooth germ. Normally, mouse incisors were repaired after damage, but inhibition/promotion of mTORC1 signaling inhibited/promoted this repair progress. Overall, we are the first to construct a stable and repeatable repair model of severe tooth germ injury, and our results reveal that mTORC1 signaling plays a crucial role during tooth germ repair, providing a potential target for clinical treatment of tooth germ injury.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Yue
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhiyun Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Li Guo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuan Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Da Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Wenming Huang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China. .,Stomatological Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
9
|
Harder A, Nagarajan B, Odermatt B, Kubitscheck U. Automatic detector synchronization for long-term imaging using confocal light-sheet microscopy. Microsc Res Tech 2023; 86:125-136. [PMID: 36054690 DOI: 10.1002/jemt.24223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is an important tool in developmental biology. In this microscopy technique confocal line detection is often used to improve image contrast. To this end, the image of the illuminating scanned focused laser beam must be mapped onto a line detector. This is not trivial for long-term observations, since the spatial position of the laser beam and therefore its image on the detector may drift. The problem is aggravated in two-photon excitation LSFM, since pulsed laser light sources exhibit a lower laser beam pointing stability than continuous wave lasers. Here, we present a procedure for automatic synchronization between the excitation laser and detector, which does not require any additional hardware components and can therefore easily be integrated into existing systems. Since the recorded images are affected by noise, a specific, noise-tolerant focus metric was developed for calculating the relative displacement, which also allows for autofocusing in the detection direction. Furthermore, we developed an image analysis approach to determine a possible tilt of the excitation laser, which is executed in parallel to the autofocusing and enables the measurement of three solid angles. This allows to automatically correct for the tilting during a measurement. We demonstrated our approach by the observation of the migration of oligodendrocyte precursor cells in two-day-old fluorescent Tg(olig2:eGFP) reporter zebrafish larvae over a time span of more than 20 hours.
Collapse
Affiliation(s)
- Alexander Harder
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Benjamin Odermatt
- Institute of Anatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Mestril S, Kim R, Hinman SS, Gomez SM, Allbritton NL. Stem/Proliferative and Differentiated Cells within Primary Murine Colonic Epithelium Display Distinct Intracellular Free Ca 2+ Signal Codes. Adv Healthc Mater 2021; 10:e2101318. [PMID: 34510822 PMCID: PMC8599644 DOI: 10.1002/adhm.202101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/24/2021] [Indexed: 11/11/2022]
Abstract
The second messenger, intracellular free calcium (Ca2+ ), acts to transduce mitogenic and differentiation signals incoming to the colonic epithelium. A self-renewing monolayer of primary murine colonic epithelial cells is formed over a soft, transparent hydrogel matrix for the scalable analysis of intracellular Ca2+ transients. Cultures that are enriched for stem/proliferative cells exhibit repetitive, high frequency (≈25 peaks h-1 ), and short pulse width (≈25 s) Ca2+ transients. Upon cell differentiation the transient frequency declines by 50% and pulse width widens by 200%. Metabolites and growth factors that are known to modulate stem cell proliferation and differentiation through Wnt and Notch signaling pathways, including CHIR-99021, N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), bone morphogenetic proteins (BMPs), and butyrate, also modulate Ca2+ oscillation patterns in a consistent manner. Increasing the stiffness of the supportive matrix from 200 Pa to 3 GPa shifts Ca2+ transient patterns toward those resembling differentiated cells. The ability to monitor Ca2+ oscillations with the spatial and temporal resolution offered by this platform, combined with its amenability to high-content screens, provides a powerful tool for investigating real-time communication within a wide range of primary tissues in addition to the colonic epithelium.
Collapse
Affiliation(s)
- Sebastian Mestril
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, and North Carolina State University, Raleigh, NC, USA
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel S. Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shawn M. Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, and North Carolina State University, Raleigh, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
11
|
Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca 2+ Dynamics in Animal Models. Cells 2021; 10:2133. [PMID: 34440902 PMCID: PMC8392631 DOI: 10.3390/cells10082133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paloma García-Casas
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Chiara Fornetto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
12
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
13
|
Fontana BD, Müller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, Amstislavskaya TG, Petersen EV, Kalueff AV, Parker MO, Rosemberg DB. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol 2021; 208:101993. [PMID: 33440208 DOI: 10.1016/j.pneurobio.2021.101993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Social behavior represents a beneficial interaction between conspecifics that is critical for maintaining health and wellbeing. Dysfunctional or poor social interaction are associated with increased risk of physical (e.g., vascular) and psychiatric disorders (e.g., anxiety, depression, and substance abuse). Although the impact of negative and positive social interactions is well-studied, their underlying mechanisms remain poorly understood. Zebrafish have well-characterized social behavior phenotypes, high genetic homology with humans, relative experimental simplicity and the potential for high-throughput screens. Here, we discuss the use of zebrafish as a candidate model organism for studying the fundamental mechanisms underlying social interactions, as well as potential impacts of social isolation on human health and wellbeing. Overall, the growing utility of zebrafish models may improve our understanding of how the presence and absence of social interactions can differentially modulate various molecular and physiological biomarkers, as well as a wide range of other behaviors.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | - Elena V Petersen
- Laboratory of Molecular Biology, Neuroscience and Bioscreening, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Beibei, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| |
Collapse
|
14
|
Buatois A, Gerlai R. Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge? Front Behav Neurosci 2020; 14:570704. [PMID: 33390911 PMCID: PMC7773606 DOI: 10.3389/fnbeh.2020.570704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Spatial learning and memory have been studied for several decades. Analyses of these processes pose fundamental scientific questions but are also relevant from a biomedical perspective. The cellular, synaptic and molecular mechanisms underlying spatial learning have been intensively investigated, yet the behavioral mechanisms/strategies in a spatial task still pose unanswered questions. Spatial learning relies upon configural information about cues in the environment. However, each of these cues can also independently form part of an elemental association with the specific spatial position, and thus spatial tasks may be solved using elemental (single CS and US association) learning. Here, we first briefly review what we know about configural learning from studies with rodents. Subsequently, we discuss the pros and cons of employing a relatively novel laboratory organism, the zebrafish in such studies, providing some examples of methods with which both elemental and configural learning may be explored with this species. Last, we speculate about future research directions focusing on how zebrafish may advance our knowledge. We argue that zebrafish strikes a reasonable compromise between system complexity and practical simplicity and that adding this species to the studies with laboratory rodents will allow us to gain a better understanding of both the evolution of and the mechanisms underlying spatial learning. We conclude that zebrafish research will enhance the translational relevance of our findings.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|