1
|
Tao X, Zhai SN, Liu CX, Huang Y, Wei J, Guo YL, Liu XQ, Li X, Yang L, Chen LL. Degradation of circular RNA by the ribonuclease DIS3. Mol Cell 2025; 85:1674-1685.e8. [PMID: 39965568 DOI: 10.1016/j.molcel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Features of circular RNAs (circRNAs) produced by back-splicing of eukaryotic exon(s) make them resistant to degradation by linear RNA decay machineries. Thus, a general circRNA degradation pathway under normal conditions has remained largely elusive. Here, we report that the endonucleolytic enzyme DIS3 is responsible for the degradation of circRNAs. Depletion of DIS3 leads to the upregulation of more than 60% of circRNAs with little effect on their linear cognates. Such DIS3-mediated circRNA degradation is conserved, occurs in the cytoplasm, and relies on DIS3's endonucleolytic activity but is independent of the RNA exosome complex. Sequence enrichment analyses suggest that DIS3 prefers to degrade circRNAs containing U-rich motifs. Correspondingly, synthesized RNA circles with or without U-rich motifs exhibit decreased or increased stabilities, respectively. Together, these findings suggest a general regulation of circRNA turnover by DIS3.
Collapse
Affiliation(s)
- Xiao Tao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Si-Nan Zhai
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi-Lin Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qi Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Academy of Natural Sciences (SANS), Shanghai 200031, China.
| |
Collapse
|
2
|
Kline BL, Siddall NA, Wijaya F, Stuart CJ, Orlando L, Bakhshalizadeh S, Afkhami F, Bell KM, Jaillard S, Robevska G, van den Bergen JA, Shahbazi S, van Hoof A, Ayers KL, Hime GR, Sinclair AH, Tucker EJ. Functional characterization of human recessive DIS3 variants in premature ovarian insufficiency†. Biol Reprod 2025; 112:102-118. [PMID: 39400047 PMCID: PMC11736438 DOI: 10.1093/biolre/ioae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/15/2024] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by the loss or complete absence of ovarian activity in women under the age of 40. Clinical presentation of POI varies with phenotypic severity ranging from premature loss of menses to complete gonadal dysgenesis. POI is genetically heterogeneous with >100 causative gene variants identified thus far. The etiology of POI varies from syndromic, idiopathic, monogenic to autoimmune causes the condition. Genetic diagnoses are beneficial to those impacted by POI as it allows for improved clinical management and fertility preservation. Identifying novel variants in candidate POI genes, however, is insufficient to make clinical diagnoses. The impact of missense variants can be predicted using bioinformatic algorithms but computational approaches have limitations and can generate false positive and false negative predictions. Functional characterization of missense variants, is therefore imperative, particularly for genes lacking a well-established genotype:phenotype correlation. Here we used whole-exome sequencing (WES) to identify the first case of a homozygous missense variant in DIS3 (c.2320C > T; p.His774Tyr) a critical component of the RNA exosome in a POI patient. This adds to the previously described compound heterozygous patient. We perform the first functional characterization of a human POI-associated DIS3 variant. A slight defect in mitotic growth was caused by the variant in a Saccharomyces cerevisiae model. Transgenic rescue of Dis3 knockdown in Drosophila melanogaster with human DIS3 carrying the patient variant led to aberrant ovarian development and egg chamber degeneration. This supports a potential deleterious impact of the human c.2320C > T; p.His774Tyr variant.
Collapse
Affiliation(s)
- Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Catherine J Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Luisa Orlando
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fateme Afkhami
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Sylvie Jaillard
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- INSERM, Institut de Recherche en Santé, Environement et Travail, University of Rennes, 9 Av. du Professeur Léon Bernard, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 2 rue Henri Le Guilloux, 35033 Rennes CEDEX 9F-35033, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Jocelyn A van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
3
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024; 635:237-242. [PMID: 39385025 PMCID: PMC11540850 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Wang X, Feng YQ, Li H, Xu Y, Yu J, Zhou M, Qiu F, Li N, Wang Z. Loss of DIS3L in the initial segment is dispensable for sperm maturation in the epididymis and male fertility. Reprod Biol 2024; 24:100914. [PMID: 38875746 DOI: 10.1016/j.repbio.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
DIS3L, a catalytic exoribonuclease associated with the cytoplasmic exosome complex, degrades cytoplasmic RNAs and is implicated in cancers and certain other diseases in humans. Epididymis plays a pivotal role in the transport, maturation, and storage of sperm required for male fertility. However, it remains unclear whether DIS3L-mediated cytoplasmic RNA degradation plays a role in epididymis biology and functioning. Herein, we fabricated a Dis3l conditional knockout (Dis3l cKO) mouse line in which DIS3L was ablated from the principal cells of the initial segment (IS). Morphological analyses showed that spermatogenesis and IS differentiation occurred normally in Dis3l cKO mice. Additionally, the absence of DIS3L had no dramatic influence on the transcriptome of IS. Moreover, the sperm count, morphology, motility, and acrosome reaction frequency in Dis3l cKO mice were comparable to that of the control, indicating that the Dis3l cKO males had normal fertility. Collectively, our genetic model demonstrates that DIS3L inactivation in the IS is nonessential for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Yan-Qin Feng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Hong Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Yu Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Junjie Yu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Meiyang Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Fanyi Qiu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China.
| | - Zhengpin Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
5
|
Wang Z, Wu D, Xu X, Yu G, Li N, Wang X, Li JL, Dean J. DIS3 ribonuclease is essential for spermatogenesis and male fertility in mice. Development 2024; 151:dev202579. [PMID: 38953252 PMCID: PMC11266750 DOI: 10.1242/dev.202579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.
Collapse
Affiliation(s)
- Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Sáez-Martínez P, Porcel-Pastrana F, Montero-Hidalgo AJ, Lozano de la Haba S, Sanchez-Sanchez R, González-Serrano T, Gómez-Gómez E, Martínez-Fuentes AJ, Jiménez-Vacas JM, Gahete MD, Luque RM. Dysregulation of RNA-Exosome machinery is directly linked to major cancer hallmarks in prostate cancer: Oncogenic role of PABPN1. Cancer Lett 2024; 584:216604. [PMID: 38244911 DOI: 10.1016/j.canlet.2023.216604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Samanta Lozano de la Haba
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sanchez-Sanchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | | | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
7
|
Cesaro G, da Soler HT, Guerra-Slompo E, Haouz A, Legrand P, Zanchin N, Guimaraes B. Trypanosoma brucei RRP44: a versatile enzyme for processing structured and non-structured RNA substrates. Nucleic Acids Res 2022; 51:380-395. [PMID: 36583334 PMCID: PMC9841401 DOI: 10.1093/nar/gkac1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rrp44/Dis3 is a conserved eukaryotic ribonuclease that acts on processing and degradation of nearly all types of RNA. It contains an endo- (PIN) and an exonucleolytic (RNB) domain and, its depletion in model organisms supports its essential function for cell viability. In Trypanosoma brucei, depletion of Rrp44 (TbRRP44) blocks maturation of ribosomal RNA, leading to disruption of ribosome synthesis and inhibition of cell proliferation. We have determined the crystal structure of the exoribonucleolytic module of TbRRP44 in an active conformation, revealing novel details of the catalytic mechanism of the RNB domain. For the first time, the position of the second magnesium involved in the two-metal-ion mechanism was determined for a member of the RNase II family. In vitro, TbRRP44 acts preferentially on non-structured uridine-rich RNA substrates. However, we demonstrated for the first time that both TbRRP44 and its homologue from Saccharomyces cerevisiae can also degrade structured substrates without 3'-end overhang, suggesting that Rrp44/Dis3 ribonucleases may be involved in degradation of a wider panel of RNA than has been assumed. Interestingly, deletion of TbRRP44 PIN domain impairs RNA binding to different extents, depending on the type of substrate.
Collapse
Affiliation(s)
- Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | - Ahmed Haouz
- Institut Pasteur, Plate-forme de cristallographie-C2RT, UMR-3528 CNRS, Paris, France
| | | | | | | |
Collapse
|
8
|
Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. FEBS Open Bio 2022. [PMID: 35247037 DOI: 10.1002/2211-5463.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022] Open
Abstract
RNAs are extremely important molecules inside the cell which perform many different functions. For example, messenger RNAs, transfer RNAs, and ribosomal RNAs are involved in protein synthesis, whereas non-coding RNAs have numerous regulatory roles. Ribonucleases are the enzymes responsible for the processing and degradation of all types of RNAs, having multiple roles in every aspect of RNA metabolism. However, the involvement of RNases in disease is still not well understood. This review focuses on the involvement of the RNase II/RNB family of 3'-5' exoribonucleases in human disease. This can be attributed to direct effects, whereby mutations in the eukaryotic enzymes of this family (Dis3 (or Rrp44), Dis3L1 (or Dis3L), and Dis3L2) are associated with a disease, or indirect effects, whereby mutations in the prokaryotic counterparts of RNase II/RNB family (RNase II and/or RNase R) affect the physiology and virulence of several human pathogens. In this review, we will compare the structural and biochemical characteristics of the members of the RNase II/RNB family of enzymes. The outcomes of mutations impacting enzymatic function will be revisited, in terms of both the direct and indirect effects on disease. Furthermore, we also describe the SARS-CoV-2 viral exoribonuclease and its importance to combat COVID-19 pandemic. As a result, RNases may be a good therapeutic target to reduce bacterial and viral pathogenicity. These are the two perspectives on RNase II/RNB family enzymes that will be presented in this review.
Collapse
Affiliation(s)
- Susana M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
9
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|
10
|
Abula A, Li X, Quan X, Yang T, Liu Y, Guo H, Li T, Ji X. Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation. Nucleic Acids Res 2021; 49:4738-4749. [PMID: 33788943 PMCID: PMC8096214 DOI: 10.1093/nar/gkab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/01/2023] Open
Abstract
RNA 2′-O-methylation is widely distributed and plays important roles in various cellular processes. Mycoplasma genitalium RNase R (MgR), a prokaryotic member of the RNase II/RNB family, is a 3′-5′ exoribonuclease and is particularly sensitive to RNA 2′-O-methylation. However, how RNase R interacts with various RNA species and exhibits remarkable sensitivity to substrate 2′-O-methyl modifications remains elusive. Here we report high-resolution crystal structures of MgR in apo form and in complex with various RNA substrates. The structural data together with extensive biochemical analysis quantitively illustrate MgR’s ribonuclease activity and significant sensitivity to RNA 2′-O-methylation. Comparison to its related homologs reveals an exquisite mechanism for the recognition and degradation of RNA substrates. Through structural and mutagenesis studies, we identified proline 277 to be responsible for the significant sensitivity of MgR to RNA 2′-O-methylation within the RNase II/RNB family. We also generated several MgR variants with modulated activities. Our work provides a mechanistic understanding of MgR activity that can be harnessed as a powerful RNA analytical tool that will open up a new venue for RNA 2′-O-methylations research in biological and clinical samples.
Collapse
Affiliation(s)
- Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaona Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xing Quan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
11
|
Tao L, He XY, Wang FY, Pan LX, Wang XY, Gan SQ, Di R, Chu MX. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim Genet 2021; 52:545-549. [PMID: 34002409 DOI: 10.1111/age.13078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Litter size is one of the most important reproductive traits of sheep, which has pronounced effects on the profit of husbandry enterprises and enthusiasm of breeders. Despite the importance of litter size, the underlying genetic mechanisms have not been entirely elucidated. Therefore, based on a high-density SNP chip, genome-wide comparative analysis was performed between two groups with different fecundity to reveal candidate genes linked to litter size via detection of homozygosity and selection signatures in Luzhong mutton sheep. Consequently, nine promising genes were identified from six runs of homozygosity islands, and functionally linked to reproduction (ACTL7A, ACTL7B, and ELP1), embryonic development (KLF5 and PIBF1), and cell cycle (DACH1, BORA, DIS3, and MZT1). A total of 128 genes were observed under selection, of which HECW1 and HTR1E were related to total lambs born, GABRG3, LRP1B, and MACROD2 to teat number, and AGBL1 to reproductive seasonality. Additionally, the presence of inbreeding depression implies the urgency of reasonable mating system to increase litter size in the present herd. These findings provide a comprehensive insight to the genetic makeup of litter size, and also contribute to implementation of marker-assisted selection in sheep.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Y He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L X Pan
- Ji'nan Laiwu Yingtai Agriculture and Animal Husbandry Technology Co., Ltd, Ji'nan, Shandong, 271114, China
| | - X Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - S Q Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - R Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
12
|
Saramago M, Bárria C, Costa VG, Souza CS, Viegas SC, Domingues S, Lousa D, Soares CM, Arraiano CM, Matos RG. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2. FEBS J 2021; 288:5130-5147. [PMID: 33705595 PMCID: PMC8237063 DOI: 10.1111/febs.15815] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
SARS‐CoV‐2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS‐CoV‐2. Nsp14 is a multifunctional protein with two distinct activities, an N‐terminal 3’‐to‐5’ exoribonuclease (ExoN) and a C‐terminal N7‐methyltransferase (N7‐MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14‐nsp10 complex from SARS‐CoV‐2. We confirm the 3’‐5’ exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS‐CoV‐2 nsp14 N7‐MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS‐CoV‐2 nsp14‐nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14‐mediated ExoN activity of SARS‐CoV‐2. We studied the role of conserved DEDD catalytic residues of SARS‐CoV‐2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS‐CoV‐2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vanessa G Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Caio S Souza
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Zhang Z, Chen C, Fang Y, Li S, Wang X, Sun L, Zhou G, Ye J. Development of a prognostic signature for esophageal cancer based on nine immune related genes. BMC Cancer 2021; 21:113. [PMID: 33541291 PMCID: PMC7860013 DOI: 10.1186/s12885-021-07813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Function of the immune system is correlated with the prognosis of the tumor. The effect of immune microenvironment on esophageal cancer (EC) development has not been fully investigated. Methods This study aimed to explore a prognostic model based on immune-related genes (IRGs) for EC. We obtained the RNA-seq dataset and clinical information of EC from the Cancer Genome Atlas (TCGA). Results We identified 247 upregulated IRGs and 56 downregulated IRGs. Pathway analysis revealed that the most differentially expressed IRGs were enriched in Cytokine-cytokine receptor interaction. We further screened 13 survival-related IRGs and constructed regulatory networks involving related transcription factors (TFs). Finally, a prognostic model was constructed with 9 IRGs (HSPA6, S100A12, CACYBP, NOS2, DKK1, OSM, STC2, NGPTL3 and NR2F2) by multivariate Cox regression analysis. The patients were classified into two subgroups with different outcomes. When adjusted with clinical factors, this model was verified as an independent predictor, which performed accurately in prognostic prediction. Next, M0 and M2 macrophages and activated mast cells were significantly enriched in high-risk group, while CD8 T cells and regulatory T cells (Tregs) were significantly enriched in low-risk group. Conclusions Prognosis related IRGs were identified and a prognostic signature for esophageal cancer based on nine IRGs was developed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07813-9.
Collapse
Affiliation(s)
- Zhi Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Cheng Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Ying Fang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Sheng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Xiaohua Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Lei Sun
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| | - Jinjun Ye
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
14
|
Jin Y, Qin X. Comprehensive Analysis of the Roles and Prognostic Value of RNA-Binding Proteins in Head and Neck Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:1789-1798. [PMID: 32716650 DOI: 10.1089/dna.2020.5641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with relatively high incidence and poor prognosis. RNA-binding proteins (RBPs) were reported to be dysregulated in multiple cancers and were closely associated with tumor initiation and progression. However, an integrated analysis of the roles of RBPs in HNSCC has not been conducted. In the present study, we obtained transcriptome data and corresponding clinical information of HNSCC patients from The Cancer Genome Atlas database and screened out differentially expressed RBPs between tumor and normal tissues. Subsequently, we utilized a series of bioinformatics analyses to elucidate the potential functions and prognostic value of these RBPs in HNSCC. As a result, a total of 88 aberrantly expressed RBPs were identified, including 63 downregulated and 25 upregulated RBPs. Functional enrichment analysis suggested that the differentially expressed RBPs mainly participated in mRNA metabolic processes, RNA processing, RNA transport, regulation of RNA stability, RNA degradation, and mRNA surveillance pathway. Three RBP genes (NOVA1, EZH2, and RBM24) were determined as prognosis-related hub genes from which EZH2 and NOVA1 were selected to construct a prognostic signature based on LASSO Cox regression algorithm. Further analysis demonstrated that the high-risk patient group stratified by the risk signature has advanced tumor grade and poorer overall survival when compared with low-risk group. Moreover, univariate analysis showed that the risk score, tumor stage, T stage, and N stage were significantly associated with patient overall survival and the multivariate analysis results indicated that the risk score and age were greatly correlated with patient prognosis. Overall, this study provided a comprehensive landscape of RBPs in HNSCC and identified an effective gene signature for predicting the clinical outcomes of HNSCC patient, which may contribute to clinical decision making and individualized cancer treatment.
Collapse
Affiliation(s)
- Yu Jin
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, P.R. China
| | - Xing Qin
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, P.R. China.,Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
15
|
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52:400-408. [PMID: 32210357 PMCID: PMC7156397 DOI: 10.1038/s12276-020-0407-z] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Collapse
Affiliation(s)
- Sung Ho Boo
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea.
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|