1
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Morigi R, Zalambani C, Farruggia G, Verardi L, Esposito D, Leoni A, Borsetti F, Voltattorni M, Zambonin L, Pincigher L, Calonghi N, Locatelli A. Identification of a new bisindolinone arresting IGROV1 cells proliferation. Eur J Med Chem 2024; 271:116365. [PMID: 38640869 DOI: 10.1016/j.ejmech.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
In an initial screening, a series of novel Knoevenagel adducts were submitted to the National Cancer Institute for evaluation of antitumor activity in human cell lines. In particular, compound 5f showed remarkable selectivity against IGROV1, an ovarian cancer cell line, without affecting healthy human fibroblast cells. Analyses of cytotoxicity, cell proliferation, cell migration, epigenetic changes, gene expression, and DNA damage were performed to obtain detailed information about its antitumor properties. Our results show that 5f causes proliferation arrest, decrease in motility, histone hyperacetylation, downregulation of cyclin D1 and α5 subunit of integrin β1 gene transcription. In addition, 5f treatment reduces transcript and protein levels of cyclin D1, which increases sensitivity to ionizing radiation and results in DNA damage comparable to cyclin D1 gene silencing.
Collapse
Affiliation(s)
- Rita Morigi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy; INBB-Biostructures and Biosystems National Institute, 00136, Rome, Italy
| | - Laura Verardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Daniele Esposito
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Alberto Leoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Manuela Voltattorni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Laura Zambonin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessandra Locatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Moya L, Walpole C, Rae F, Srinivasan S, Seim I, Lai J, Nicol D, Williams ED, Clements JA, Batra J. Characterisation of cell lines derived from prostate cancer patients with localised disease. Prostate Cancer Prostatic Dis 2023; 26:614-624. [PMID: 37264224 PMCID: PMC10449630 DOI: 10.1038/s41391-023-00679-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prostate cancer is a broad-spectrum disease, spanning from indolent to a highly aggressive lethal malignancy. Prostate cancer cell lines are essential tools to understanding the basic features of this malignancy, as well as in identifying novel therapeutic strategies. However, most cell lines routinely used in prostate cancer research are derived from metastatic disease and may not fully elucidate the molecular events underlying the early stages of cancer development and progression. Thus, there is a need for new cell lines derived from localised disease to better span the disease spectrum. METHODS Prostatic tissue from the primary site, and adjacent non-cancerous tissue was obtained from four patients with localised disease undergoing radical prostatectomy. Epithelial cell outgrowths were immortalised with human papillomavirus type 16 (HPV16) E6 and E7 to establish monoclonal cell lines. Chromosomal ploidy was imaged and STR profiles were determined. Cell morphology, colony formation and cell proliferation characteristics were assessed. Androgen receptor (AR) expression and AR-responsiveness to androgen treatment were analysed by immunofluorescence and RT-qPCR, respectively. RNA-seq analysis was performed to identify prostate lineage markers and expression of prostate cancer tumorigenesis-related genes. RESULTS Two benign cell lines derived from non-cancer cells (AQ0420 and AQ0396) and two tumour tissue derived cancer cell lines (AQ0411 and AQ0415) were immortalised from four patients with localised prostatic adenocarcinoma. The cell lines presented an epithelial morphology and a slow to moderate proliferative rate. None of the cell lines formed anchorage independent colonies or displayed AR-responsiveness. Comparative RNA-seq expression analysis confirmed the prostatic lineage of the four cell lines, with a distinct gene expression profile from that of the metastatic prostate cancer cell lines, PC-3 and LNCaP. CONCLUSIONS Comprehensive characterization of these cell lines may provide new in vitro tools that could bridge the current knowledge gap between benign, early-stage and metastatic disease.
Collapse
Affiliation(s)
- Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Carina Walpole
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Cancer Immunotherapies Group, Mater Research, Translational Research Institute, Brisbane, Australia
| | - Fiona Rae
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| | - John Lai
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Australian Genome Research Facility Ltd, Gehrmann Laboratories, the University of Queensland, Brisbane, Australia
| | - David Nicol
- Urology Department, Princess Alexandra Hospital, Brisbane, Australia
- Urology Unit, The Royal Marsden, London, UK
| | - Elizabeth D Williams
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
- Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
5
|
Archer LK, Frame FM, Walker HF, Droop AP, McDonald GLK, Kucko S, Berney DM, Mann VM, Simms MS, Maitland NJ. ETS transcription factor ELF3 (ESE-1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio 2022; 12:1365-1387. [PMID: 35472129 PMCID: PMC9249341 DOI: 10.1002/2211-5463.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions as part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.
Collapse
Affiliation(s)
- Leanne K. Archer
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Hannah F. Walker
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | | - Samuel Kucko
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Daniel M. Berney
- Department of Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | |
Collapse
|