1
|
Fitch AK, Malhotra S, Conroy R. Differentiating monogenic and syndromic obesities from polygenic obesity: Assessment, diagnosis, and management. OBESITY PILLARS 2024; 11:100110. [PMID: 38766314 PMCID: PMC11101890 DOI: 10.1016/j.obpill.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Background Obesity is a multifactorial neurohormonal disease that results from dysfunction within energy regulation pathways and is associated with increased morbidity, mortality, and reduced quality of life. The most common form is polygenic obesity, which results from interactions between multiple gene variants and environmental factors. Highly penetrant monogenic and syndromic obesities result from rare genetic variants with minimal environmental influence and can be differentiated from polygenic obesity depending on key symptoms, including hyperphagia; early-onset, severe obesity; and suboptimal responses to nontargeted therapies. Timely diagnosis of monogenic or syndromic obesity is critical to inform management strategies and reduce disease burden. We outline the physiology of weight regulation, role of genetics in obesity, and differentiating characteristics between polygenic and rare genetic obesity to facilitate diagnosis and transition toward targeted therapies. Methods In this narrative review, we focused on case reports, case studies, and natural history studies of patients with monogenic and syndromic obesities and clinical trials examining the efficacy, safety, and quality of life impact of nontargeted and targeted therapies in these populations. We also provide comprehensive algorithms for diagnosis of patients with suspected rare genetic causes of obesity. Results Patients with monogenic and syndromic obesities commonly present with hyperphagia (ie, pathologic, insatiable hunger) and early-onset, severe obesity, and the presence of hallmark characteristics can inform genetic testing and diagnostic approach. Following diagnosis, specialized care teams can address complex symptoms, and hyperphagia is managed behaviorally. Various pharmacotherapies show promise in these patient populations, including setmelanotide and glucagon-like peptide-1 receptor agonists. Conclusion Understanding the pathophysiology and differentiating characteristics of monogenic and syndromic obesities can facilitate diagnosis and management and has led to development of targeted pharmacotherapies with demonstrated efficacy for reducing body weight and hunger in the affected populations.
Collapse
Affiliation(s)
| | - Sonali Malhotra
- Harvard Medical School, Boston, MA, USA
- Rhythm Pharmaceuticals, Inc., Boston, MA, USA
- Massachussetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
2
|
de Assis GG, Murawska-Ciałowicz E. Leptin-A Potential Bridge between Fat Metabolism and the Brain's Vulnerability to Neuropsychiatric Disorders: A Systematic Review. J Clin Med 2021; 10:5714. [PMID: 34884416 PMCID: PMC8658385 DOI: 10.3390/jcm10235714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Obesity and being overweight have been described as potential causes of neurological disorders. Leptin, a peptide expressed in fat tissue, importantly participates in energy homeostasis and storage and has recently been identified for its signaling receptors in neuronal circuits of the brain. AIM To elucidate whether the endogenous modulation of leptin can be a protection against neuropsychiatric disorders. METHOD A systematic review was performed in accordance with the PRISMA-P method, and reports of studies containing data of leptin concentrations in healthy individuals with or without obesity were retrieved from the PubMed database, using the combinations of Mesh terms for "Leptin" and "Metabolism". RESULTS Forty-seven randomized and non-randomized controlled trials, dating from 2000 to 2021, were included in the qualitative synthesis. DISCUSSION AND CONCLUSIONS Leptin secretion displays a stabilizing pattern that is more sensitive to a negative energy intake imbalance. Leptin levels influence body weight and fat mass as a pro-homeostasis factor. However, long-term exposure to elevated leptin levels may lead to mental/behavioral disorders related to the feeding and reward systems.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Molecular Biology, Gdansk University of Physical Education and Sports, 80-336 Gdansk, Poland
- Laboratory of Behavioral Endocrinology—BELab—Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, University School of Physical Education, 51-612 Wroclaw, Poland;
| |
Collapse
|
3
|
De Groot CJ, Poitou Bernert C, Coupaye M, Clement K, Paschou SA, Charmandari E, Kanaka-Gantenbein C, Wabitsch M, Buddingh EP, Nieuwenhuijsen B, Marina L, Johannsson G, Van Den Akker ELT. Clinical management of patients with genetic obesity during COVID-19 pandemic: position paper of the ESE Growth & Genetic Obesity COVID-19 Study Group and Rare Endo-ERN main thematic group on Growth and Obesity. Endocrine 2021; 71:653-662. [PMID: 33512658 PMCID: PMC7845285 DOI: 10.1007/s12020-021-02619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
This article aims to provide guidance on prevention and treatment of COVID-19 in patients with genetic obesity. Key principals of the management of patients with genetic obesity during COVID-19 pandemic for patients that have contracted COVID-19 are to be aware of: possible adrenal insufficiency (e.g., POMC deficiency, PWS); a more severe course in patients with concomitant immunodeficiency (e.g., LEP and LEPR deficiency), although defective leptin signalling could also be protective against the pro-inflammatory phenotype of COVID-19; disease severity being masked by insufficient awareness of symptoms in syndromic obesity patients with intellectual deficit (in particular PWS); to adjust medication dose to increased body size, preferably use dosing in m2; the high risk of malnutrition in patients with Sars-Cov2 infection, even in case of obesity. Key principals of the obesity management during the pandemic are to strive for optimal obesity management and a healthy lifestyle within the possibilities of the regulations to prevent weight (re)gain and to address anxiety within consultations, since prevalence of anxiety for COVID-19 is underestimated.
Collapse
Affiliation(s)
- Cornelis Jan De Groot
- Pediatric Endocrinology and Obesity Center CGG Erasmus MC, Rotterdam and Willem Alexander Children's Hospital, LUMC, Leiden, the Netherlands.
| | - Christine Poitou Bernert
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and other rare obesities), Nutrition Department, Pitié-Salpêtrière hospital, Paris, France
- Sorbonne Université/INSERM, Nutrition and obesities; systemic approaches (NutriOmics) research Unit, Paris, France
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and other rare obesities), Nutrition Department, Pitié-Salpêtrière and Louis-Mourier hospitals, Paris, France
| | - Karine Clement
- Sorbonne Université/INSERM, Nutrition and obesities; systemic approaches (NutriOmics) research Unit, Paris, France
- Assistance Publique-Hopitaux de Paris, Nutrition Department, Pitie-Salpetriere Hospital, Paris, France
| | - Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Charmandari
- Pediatric and Adolescent Endocrinology, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | - Ljiljana Marina
- Assistant Professor Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gudmundur Johannsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Endocrinology, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - E L T Van Den Akker
- Pediatric Endocrinology and Obesity Center CGG, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Littleton SH, Berkowitz RI, Grant SFA. Genetic Determinants of Childhood Obesity. Mol Diagn Ther 2020; 24:653-663. [PMID: 33006084 PMCID: PMC7680380 DOI: 10.1007/s40291-020-00496-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Obesity represents a major health burden to both developed and developing countries. Furthermore, the incidence of obesity is increasing in children. Obesity contributes substantially to mortality in the United States by increasing the risk for type 2 diabetes, cardiovascular-related diseases, and other comorbidities. Despite environmental changes over past decades, including increases in high-calorie foods and sedentary lifestyles, there is very clear evidence of a genetic predisposition to obesity risk. Childhood obesity cases can be categorized in one of two ways: syndromic or non-syndromic. Syndromic obesity includes disorders such as Prader-Willi syndrome, Bardet-Biedl syndrome, and Alström syndrome. Non-syndromic cases of obesity can be further separated into rarer instances of monogenic obesity and much more common forms of polygenic obesity. The advent of genome-wide association studies (GWAS) and next-generation sequencing has driven significant advances in our understanding of the genetic contribution to childhood obesity. Many rare and common genetic variants have been shown to contribute to the heritability in obesity, although the molecular mechanisms underlying most of these variants remain unclear. An important caveat of GWAS efforts is that they do not strictly represent gene target discoveries, rather simply the uncovering of robust genetic signals. One clear example of this is with progress in understanding the key obesity signal harbored within an intronic region of the FTO gene. It has been shown that the non-coding region in which the variant actually resides in fact influences the expression of genes distal to FTO instead, specifically IRX3 and IRX5. Such discoveries suggest that associated non-coding variants can be embedded within or next to one gene, but commonly influence the expression of other, more distal effector genes. Advances in genetics and genomics are therefore contributing to a deeper understanding of childhood obesity, allowing for development of clinical tools and therapeutic agents.
Collapse
Affiliation(s)
- Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Robert I Berkowitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA.
- Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
5
|
Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020; 12:E3502. [PMID: 33202557 PMCID: PMC7696960 DOI: 10.3390/nu12113502] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | - Daniele Tomassoni
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| |
Collapse
|
6
|
Kühnen P, Wiegand S, Biebermann H. Pharmacological treatment strategies for patients with monogenic obesity. J Pediatr Endocrinol Metab 2020; 33:/j/jpem.ahead-of-print/jpem-2020-0129/jpem-2020-0129.xml. [PMID: 32619193 DOI: 10.1515/jpem-2020-0129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 12/29/2022]
Abstract
The leptin melanocortin signaling pathway is playing a pivotal role for body weight regulation. Genetic defects within this cascade are leading to severe hyperphagia and early onset obesity. In most cases, due to persistent hyperphagia the affected patients are not able to stabilize body weight for a longer period of time with conservative treatment strategies based on lifestyle interventions. Therefore, it is of importance to implement alternative treatment options for these patients. This review provides an overview about the published pharmacological treatment attempts in respect to monogenic forms of obesity and summarizes recent research progress about the role of MC4R signaling and POMC derivatives for body weight regulation.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Wiegand
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Center for Social-Pediatric Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
7
|
Zlatska AV, Vasyliev RG, Gordiienko IM, Rodnichenko AE, Morozova MA, Vulf MA, Zubov DO, Novikova SN, Litvinova LS, Grebennikova TV, Zlatskiy IA, Syroeshkin AV. Effect of the deuterium on efficiency and type of adipogenic differentiation of human adipose-derived stem cells in vitro. Sci Rep 2020; 10:5217. [PMID: 32251307 PMCID: PMC7089999 DOI: 10.1038/s41598-020-61983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we performed an adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro with different deuterium content (natural, low and high) in the culture medium during differentiation process with parallel analysis of the gene expression, metabolic activity and cell viability/toxicity. After ADSCs differentiation into adipocytes we have done the analysis of differentiation process efficiency and determined a type of resulting adipocytes (by morphology, gene expression, UCP1 protein detection and adipokine production analysis). We have found that high (5 × 105 ppm) deuterium content significantly inhibit in vitro adipogenic differentiation of human ADSCs compared to the groups with natural (150 ppm) and low (30 ppm) deuterium content. Importantly, protocol of differentiation used in our study leads to white adipocytes development in groups with natural (control) and high deuterium content, whereas deuterium-depleted differentiation medium leads to brown-like (beige) adipocytes formation. We have also remarked the direct impact of deuterium on the cellular survival and metabolic activity. Interesting, in deuterium depleted-medium, the cells had normal survival rate and high metabolic activity, whereas the inhibitory effect of deuterated medium on ADSCs differentiation at least was partly associated with deuterium cytotoxicity and inhibitory effect on metabolic activity. The inhibitory effect of deuterium on metabolic activity and the subsequent decrease in the effectiveness of adipogenic differentiation is probably associated with mitochondrial dysfunction. Thus, deuterium could be considered as an element that affects the substance chirality. These findings may be the basis for the development of new approaches in the treatment of obesity, metabolic syndrome and diabetes through the regulation of adipose-derived stem cell differentiation and adipocyte functions.
Collapse
Affiliation(s)
- Alona V Zlatska
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine.,Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine
| | - Roman G Vasyliev
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Inna M Gordiienko
- Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
| | - Anzhela E Rodnichenko
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Maria A Morozova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Maria A Vulf
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Dmytro O Zubov
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Svitlana N Novikova
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Larisa S Litvinova
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Tatiana V Grebennikova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Federal Research Center of Epidemiology and Microbiology named Gamalei, Moscow, Russian Federation
| | - Igor A Zlatskiy
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine. .,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Anton V Syroeshkin
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|