1
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
2
|
Sacristan-Reviriego A, Le HM, Georgiou M, Meunier I, Bocquet B, Roux AF, Prodromou C, Bainbridge J, Michaelides M, van der Spuy J. Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Sci Rep 2020; 10:17520. [PMID: 33067476 PMCID: PMC7567831 DOI: 10.1038/s41598-020-74516-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Disease-causing sequence variants in the highly polymorphic AIPL1 gene are associated with a broad spectrum of inherited retinal diseases ranging from severe autosomal recessive Leber congenital amaurosis to later onset retinitis pigmentosa. AIPL1 is a photoreceptor-specific co-chaperone that interacts with HSP90 to facilitate the stable assembly of retinal cGMP phosphodiesterase, PDE6. In this report, we establish unequivocal correlations between patient clinical phenotypes and in vitro functional assays of uncharacterized AIPL1 variants. We confirm that missense and nonsense variants in the FKBP-like and tetratricopeptide repeat domains of AIPL1 lead to the loss of both HSP90 interaction and PDE6 activity, confirming these variants cause LCA. In contrast, we report the association of p.G122R with milder forms of retinal degeneration, and show that while p.G122R had no effect on HSP90 binding, the modulation of PDE6 cGMP levels was impaired. The clinical history of these patients together with our functional assays suggest that the p.G122R variant is a rare hypomorphic allele with a later disease onset, amenable to therapeutic intervention. Finally, we report the primate-specific proline-rich domain to be dispensable for both HSP90 interaction and PDE6 activity. We conclude that variants investigated in this domain do not cause disease, with the exception of p.A352_P355del associated with autosomal dominant cone-rod dystrophy.
Collapse
Affiliation(s)
| | - Hoang Mai Le
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Isabelle Meunier
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Beatrice Bocquet
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | | | - James Bainbridge
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Jacqueline van der Spuy
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|