1
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Zeng J, Sun Y, Sun S, Jiang M, Zhang D, Li W, Liu Z, Shang H, Guan X, Zhang W. Leveraging Nanodrug Delivery System for Simultaneously Targeting Tumor Cells and M2 Tumor-Associated Macrophages for Efficient Colon Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50475-50484. [PMID: 36327132 DOI: 10.1021/acsami.2c11534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor-associated macrophages (TAMs) widely exist in the solid tumors, which participate in the entire course of tumor development and execute momentous impacts. Therefore, manipulating TAMs has been identified as an expecting strategy with immense potential for cancer therapy. Herein, a nanodrug delivery system was leveraged for simultaneously targeting tumor cells and M2-type TAMs for efficient colon cancer therapy. The broad-spectrum anticancer chemotherapeutic drug doxorubicin (DOX) was hitchhiked in a mannose-modified bovine serum albumin (MAN-BSA) carrier. The DOX@MAN-BSA nanodrug delivery system was verified to possess feasible physical performances for unhindered systemic circulation and active targeting on colon tumors. DOX@MAN-BSA nanoparticles could be preferentially swallowed by colon tumor cells and M2 TAMs through mannose receptor-mediated endocytosis. Further in vivo antitumor therapy in CT26 colon tumor-bearing mice has achieved remarkable suppression efficacy with satisfactory biosafety. Leveraging the nanodrug delivery system for simultaneously targeting tumor cells and M2 TAMs has contributed a feasible strategy to collaboratively repress the malignant tumor cells and the collusive M2 TAMs for efficient cancer therapy.
Collapse
Affiliation(s)
- Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yanju Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shuo Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Daijuan Zhang
- Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
4
|
Zhang H, Daněk O, Makarov D, Rádl S, Kim D, Ledvinka J, Vychodilová K, Hlaváč J, Lefèbre J, Denis M, Rademacher C, Ménová P. Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Med Chem Lett 2022; 13:935-942. [DOI: 10.1021/acsmedchemlett.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Ondřej Daněk
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Dmytro Makarov
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Stanislav Rádl
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
- Zentiva a.s., U Kabelovny 130, 10237 Prague 10, Czech Republic
| | - Dongyoon Kim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Jiří Ledvinka
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
5
|
Single-molecule imaging of glycan-lectin interactions on cells with Glyco-PAINT. Nat Chem Biol 2021; 17:1281-1288. [PMID: 34764473 DOI: 10.1038/s41589-021-00896-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 09/10/2021] [Indexed: 11/08/2022]
Abstract
Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.
Collapse
|
6
|
Zlatina K, Galuska SP. The N-glycans of lactoferrin: more than just a sweet decoration. Biochem Cell Biol 2021; 99:117-127. [DOI: 10.1139/bcb-2020-0106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nearly all extracellular proteins undergo post-translational modification with sugar chains during their transit through the endoplasmic reticulum and the Golgi apparatus. These “sweet” modifications not only influence the activity of its carrier protein, but they themselves often have bioactivity, independent of the carrier function. Lactoferrin belongs to the group of glycoproteins and is modified with several different N-glycans. This minireview summarizes several studies dealing with the diverse glycosylation patterns of lactoferrin from different origins, and the potential impact of these post-translational modifications on the functionality of lactoferrin. A special emphasis is placed on the differences between human and bovine lactoferrin, because the latter form is often selected for the development of novel therapeutic approaches in humans. For this reason, the potential impact of the bovine-specific glycosylation patterns on the observed heterogeneous effects of lactoferrin in humans is discussed within this minireview.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
7
|
Sun H, Fan Z, Xiang S, Zuo W, Yang Y, Huang D, Su G, Fu X, Zhao Q, Hou Z. Novel, Self-Distinguished, Dual Stimulus-Responsive Therapeutic Nanoplatform for Intracellular On-Demand Drug Release. Mol Pharm 2020; 17:2435-2450. [DOI: 10.1021/acs.molpharmaceut.0c00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Heng Sun
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenbao Zuo
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China
| | - Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guanghao Su
- Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Xu Fu
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Fan Z, Wang Y, Xiang S, Zuo W, Huang D, Jiang B, Sun H, Yin W, Xie L, Hou Z. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate–mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. J Mater Chem B 2020; 8:1922-1934. [DOI: 10.1039/d0tb00049c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimulus-responsive carrier-free MTX–MAN conjugate nanoparticles could be expected to achieve dual-receptor-mediated self-recognizing, reduced drug dosage, and enhanced synergistic chemotherapeutic effects.
Collapse
|