1
|
Conesa-Bakkali R, Morillo-Huesca M, Martínez-Fábregas J. Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy. Cells 2025; 14:68. [PMID: 39851495 PMCID: PMC11763575 DOI: 10.3390/cells14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions. Furthermore, some lysosomal proteases are no longer restricted to the lysosomal compartment, as more novel non-canonical, extralysosomal targets are being identified. Currently, lysosomal proteases are accepted to play key functions in the extracellular milieu, attached to the plasma membrane and even in the cytosolic and nuclear compartments of the cell. Under physiological conditions, lysosomal proteases, through non-canonical, extralysosomal activities, have been linked to cell differentiation, regulation of gene expression, and cell division. Under pathological conditions, these proteases have been linked to cancer, mostly through their extralysosomal activities in the cytosol and nuclei of cells. In this review, we aim to provide a comprehensive summary of our current knowledge about the extralysosomal, non-canonical functions of lysosomal proteases, both under physiological and pathological conditions, with a particular interest in cancer, that could potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Secomandi E, Esposito A, Camurani G, Vidoni C, Salwa A, Lualdi C, Vallino L, Ferraresi A, Isidoro C. Differential Competitive Growth of Transgenic Subclones of Neuroblastoma Cells Expressing Different Levels of Cathepsin D Co-Cultured in 2D and 3D in Response to EGF: Implications in Tumor Heterogeneity and Metastasis. Cancers (Basel) 2024; 16:1343. [PMID: 38611021 PMCID: PMC11010890 DOI: 10.3390/cancers16071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Neuroblastoma (NB) is an embryonal tumor arising from the sympathetic central nervous system. The epidermal growth factor (EGF) plays a role in NB growth and metastatic behavior. Recently, we have demonstrated that cathepsin D (CD) contrasts EGF-induced NB cell growth in 2D by downregulating EGFR/MAPK signaling. Aggressive NB is highly metastatic to the bone and the brain. In the metastatic process, adherent cells detach to form clusters of suspended cells that adhere once they reach the metastatic site and form secondary colonies. Whether CD is involved in the survival of metastatic NB clones is not known. Therefore, in this study, we addressed how CD differentially affects cell growth in suspension versus the adherent condition. To mimic tumor heterogeneity, we co-cultured transgenic clones silenced for or overexpressing CD. We compared the growth kinetics of such mixed clones in 2D and 3D models in response to EGF, and we found that the Over CD clone had an advantage for growth in suspension, while the CD knocked-down clone was favored for the adherent growth in 2D. Interestingly, on switching from 3D to 2D culture conditions, the expression of E-cadherin and of N-cadherin increased in the KD-CD and Over CD clones, respectively. The fact that CD plays a dual role in cancer cell growth in 2D and 3D conditions indicates that during clonal evolution, subclones expressing different level of CD may arise, which confers survival and growth advantages depending on the metastatic step. By searching the TCGA database, we found up to 38 miRNAs capable of downregulating CD. Interestingly, these miRNAs are associated with biological processes controlling cell adhesion and cell migration. The present findings support the view that during NB growth on a substrate or when spreading as floating neurospheres, CD expression is epigenetically modulated to confer survival advantage. Thus, epigenetic targeting of CD could represent an additional strategy to prevent NB metastases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (E.S.); (A.E.); (G.C.); (C.V.); (A.S.); (C.L.); (L.V.)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (E.S.); (A.E.); (G.C.); (C.V.); (A.S.); (C.L.); (L.V.)
| |
Collapse
|
3
|
Kozak A, Mikhaylov G, Khodakivskyi P, Goun E, Turk B, Vasiljeva O. A New Cathepsin D Targeting Drug Delivery System Based on Immunoliposomes Functionalized with Lipidated Pepstatin A. Pharmaceutics 2023; 15:2464. [PMID: 37896224 PMCID: PMC10609775 DOI: 10.3390/pharmaceutics15102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cathepsin D is an aspartic protease and one of the most abundant proteases. It is overexpressed in many cancers and plays an important role in tumor development, progression, and metastasis. While it is a physiologically intracellular protein, cathepsin D is secreted into the extracellular matrix under pathological conditions, making it an appealing target for drug delivery systems. Here, we present the development and evaluation of a new delivery system for tumor targeting based on immunoliposomes functionalized with pepstatin A-a natural peptide inhibitor of cathepsin D. A lipid tail was added to pepstatin A, enabling its incorporation into the liposomal lipid bilayer. The successful targeting of cathepsin D was confirmed using recombinant cathepsin D and in tumor cell lines, showing the feasibility of this targeting approach and its potential for in vivo use in theragnostic applications.
Collapse
Affiliation(s)
- Andreja Kozak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- SwissLumix SARL, 1015 Lausanne, Switzerland
| | - Pavlo Khodakivskyi
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Elena Goun
- SwissLumix SARL, 1015 Lausanne, Switzerland
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Mustafa A, Elkhamisy F, Arghiani N, Pranjol MZI. Potential crosstalk between pericytes and cathepsins in the tumour microenvironment. Biomed Pharmacother 2023; 164:114932. [PMID: 37236029 DOI: 10.1016/j.biopha.2023.114932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains a formidable global health challenge, and as such, investigators are constantly exploring underlying mechanisms that drive its progression. One area of interest is the role of lysosomal enzymes, such as cathepsins, in regulating cancer growth and development in the tumour microenvironment (TME). Pericytes, a key component of vasculature, play a key role in regulating blood vessel formation in the TME, have been shown to be influenced by cathepsins and their activity. Although cathepsins such as cathepsins D and L have been shown to induce angiogenesis, currently no direct link is known between pericytes and cathepsins interaction. This review aims to shed light on the potential interplay between pericytes and cathepsins in the TME, highlighting the possible implications for cancer therapy and future research directions.
Collapse
Affiliation(s)
- A Mustafa
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - F Elkhamisy
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - N Arghiani
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - M Z I Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
5
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
6
|
Cathepsins in the extracellular space: Focusing on non-lysosomal proteolytic functions with clinical implications. Cell Signal 2023; 103:110531. [PMID: 36417977 DOI: 10.1016/j.cellsig.2022.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Cathepsins can be found in the extracellular space, cytoplasm, and nucleus. It was initially suspected that the primary physiological function of the cathepsins was to break down intracellular protein, and that they also had a role in pathological processes including inflammation and apoptosis. However, the many actions of cathepsins outside the cell and their complicated biological impacts have garnered much interest. Cathepsins play significant roles in a number of illnesses by regulating parenchymal cell proliferation, cell migration, viral invasion, inflammation, and immunological responses through extracellular matrix remodeling, signaling disruption, leukocyte recruitment, and cell adhesion. In this review, we outline the physiological roles of cathepsins in the extracellular space, the crucial pathological functions performed by cathepsins in illnesses, and the recent breakthroughs in the detection and therapy of specific inhibitors and fluorescent probes in associated dysfunction.
Collapse
|
7
|
Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24032100. [PMID: 36768435 PMCID: PMC9916912 DOI: 10.3390/ijms24032100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.
Collapse
|
8
|
Pedram K, Laqtom NN, Shon DJ, Di Spiezio A, Riley NM, Saftig P, Abu-Remaileh M, Bertozzi CR. Lysosomal cathepsin D mediates endogenous mucin glycodomain catabolism in mammals. Proc Natl Acad Sci U S A 2022; 119:e2117105119. [PMID: 36122205 PMCID: PMC9522329 DOI: 10.1073/pnas.2117105119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nouf N. Laqtom
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - D. Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | | | - Nicholas M. Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany D-24098
| | - Monther Abu-Remaileh
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
9
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
10
|
Ileiwat ZE, Tabish TA, Zinovkin DA, Yuzugulen J, Arghiani N, Pranjol MZI. The mechanistic immunosuppressive role of the tumour vasculature and potential nanoparticle-mediated therapeutic strategies. Front Immunol 2022; 13:976677. [PMID: 36045675 PMCID: PMC9423123 DOI: 10.3389/fimmu.2022.976677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
The tumour vasculature is well-established to display irregular structure and hierarchy that is conducive to promoting tumour growth and metastasis while maintaining immunosuppression. As tumours grow, their metabolic rate increases while their distance from blood vessels furthers, generating a hypoxic and acidic tumour microenvironment. Consequently, cancer cells upregulate the expression of pro-angiogenic factors which propagate aberrant blood vessel formation. This generates atypical vascular features that reduce chemotherapy, radiotherapy, and immunotherapy efficacy. Therefore, the development of therapies aiming to restore the vasculature to a functional state remains a necessary research target. Many anti-angiogenic therapies aim to target this such as bevacizumab or sunitinib but have shown variable efficacy in solid tumours due to intrinsic or acquired resistance. Therefore, novel therapeutic strategies such as combination therapies and nanotechnology-mediated therapies may provide alternatives to overcoming the barriers generated by the tumour vasculature. This review summarises the mechanisms that induce abnormal tumour angiogenesis and how the vasculature’s features elicit immunosuppression. Furthermore, the review explores examples of treatment regiments that target the tumour vasculature.
Collapse
Affiliation(s)
- Zakaria Elias Ileiwat
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| | - Md Zahidul I. Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| |
Collapse
|
11
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
12
|
Cathepsin D inhibitors based on tasiamide B derivatives with cell membrane permeability. Bioorg Med Chem 2022; 57:116646. [DOI: 10.1016/j.bmc.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
13
|
Xu B, Peng Z, Yan G, Wang N, Chen M, Yao X, Sun M, An Y. Establishment and Validation of a Genetic Label Associated With M2 Macrophage Infiltration to Predict Survival in Patients With Colon Cancer and to Assist in Immunotherapy. Front Genet 2021; 12:726387. [PMID: 34552622 PMCID: PMC8451970 DOI: 10.3389/fgene.2021.726387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
Background Colon cancer is a malignant tumor with high morbidity and mortality. Researchers have tried to interpret it from different perspectives and divided it into different subtypes to facilitate individualized treatment. With the rise in the use of immunotherapy, its value in the field of tumor has begun to emerge. From the perspective of immune infiltration, this study classified colon cancer according to the infiltration of M2 macrophages in patients with colon cancer and further explored the same. Methods Cibersort algorithm was used to analyze the level of immune cell infiltration in patients with colon cancer in The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network analysis (WGCNA), Consensus Clustering analysis, Lasso analysis, and univariate Kaplan-Meier analysis were used to screen and verify the hub genes associated with M2 macrophages. Principal component analysis (PCA) was used to establish the M2 macrophage-related score (M2I Score). The correlation between M2I Score and somatic cell variation and microsatellite instability (MSI) were analyzed. Furthermore, the correlation between M2 macrophage score and differences in immunotherapy sensitivity was also explored. Results M2 macrophage infiltration was associated with poor prognosis. Four hub genes (ANKS4B, CTSD, TIMP1, and ZNF703) were identified as the progression-related genes associated with M2 macrophages. A stable and accurate M2I Score for M2 macrophages used in colon adenocarcinoma was determined based on four hub genes. The M2I Score was positively correlated with the tumor mutation load (TMB). The M2I Score of the group with high instability of microsatellites was higher than that of the group with low instability of microsatellites and microsatellite-stable group. Combined with the Cancer Immunome Atlas database, we concluded that patients with high M2I Scores were more sensitive to programmed cell death protein 1 (PD-1) inhibitors and PD-1 inhibitors combined with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors. The low-rating group may have better efficacy without immune checkpoint inhibitors or with CTLA4 inhibitors alone. Conclusion Four prognostic hub genes associated with M2 macrophages were screened to establish the M2I Score. Patients were divided into two subgroups: high M2I Score group and low M2I Score group. TMB, MSI, and sensitivity to immunotherapy were higher in the high-rated group. PD-1 inhibitors or PD-1 combined with CTLA-4 inhibitors are preferred for patients in the high-rated group who are more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Boyang Xu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ningning Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Moye Chen
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Yao
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue An
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Broadway R, Patel NM, Hillier LE, El-Briri A, Korneva YS, Zinovkin DA, Pranjol MZI. Potential Role of Diabetes Mellitus-Associated T Cell Senescence in Epithelial Ovarian Cancer Omental Metastasis. Life (Basel) 2021; 11:788. [PMID: 34440532 PMCID: PMC8401827 DOI: 10.3390/life11080788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75-79 age group in women, have been shown to be influenced by immune cells within the "milky spots" or immune clusters of the omentum. As T2DM has been reported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions.
Collapse
Affiliation(s)
- Rhianne Broadway
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Nikita M. Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Lucy E. Hillier
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Amal El-Briri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Yulia S. Korneva
- Department of Pathological Anatomy, Smolensk State Medical University, Krupskoy St., 28, 214019 Smolensk, Russia;
- Smolensk Regional Institute of Pathology, Gagarina av, 214020 Smolensk, Russia
| | - Dmitry A. Zinovkin
- Department of Pathology, Gomel State Medical University, 246000 Gomel Region, Belarus;
| | - Md Zahidul I. Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| |
Collapse
|
15
|
Cathepsin D-Managing the Delicate Balance. Pharmaceutics 2021; 13:pharmaceutics13060837. [PMID: 34198733 PMCID: PMC8229105 DOI: 10.3390/pharmaceutics13060837] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.
Collapse
|
16
|
The Role of Lysosomes in the Cancer Progression: Focus on the Extracellular Matrix Degradation. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers (Basel) 2020; 12:cancers12071826. [PMID: 32645977 PMCID: PMC7408985 DOI: 10.3390/cancers12071826] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike traditional cancer therapies, such as surgery, radiation and chemotherapy that are typically non-specific, cancer immunotherapy harnesses the high specificity of a patient’s own immune system to selectively kill cancer cells. The immune system is the body’s main cancer surveillance system, but cancers may evade destruction thanks to various immune-suppressing mechanisms. We therefore need to deploy various immunotherapy-based strategies to help bolster the anti-tumour immune responses. These include engineering T cells to express chimeric antigen receptors (CARs) to specifically recognise tumour neoantigens, inactivating immune checkpoints, oncolytic viruses and dendritic cell (DC) vaccines, which have all shown clinical benefit in certain cancers. However, treatment efficacy remains poor due to drug-induced adverse events and immunosuppressive tendencies of the tumour microenvironment. Recent preclinical studies have unveiled novel therapies such as anti-cathepsin antibodies, galectin-1 blockade and anti-OX40 agonistic antibodies, which may be utilised as adjuvant therapies to modulate the tumour microenvironment and permit more ferocious anti-tumour immune response.
Collapse
|