1
|
Brandenstein C, Stelzl S, Gutsmiedl E, Schott W, Weiler A, Fierlinger P. Towards an electrostatic storage ring for fundamental physics measurements. EPJ WEB OF CONFERENCES 2023. [DOI: 10.1051/epjconf/202328201017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
We describe a new table-top electrostatic storage ring concept for 30 keV polarized ions with fixed spin orientation. The device will ultimately be capable of measuring magnetic fields with a resolution of 10−20 T with sub-mHz bandwidth. With the possibility to store different kinds of ions or ionic molecules and access to prepare and probe states of the systems using lasers and SQUIDs, it can be used to search for electric dipole moments (EDMs) of electrons and nucleons, as well as axion-like particle dark matter and dark photon dark matter. Its sensitivity potential stems from several hours of storage time, comparably long spin coherence times, and the possibility to trap up to 109 particles in bunches with possibly different state preparations for differential measurements. As a dark matter experiment, it is most sensitive in the mass range of 10−10 to 10−19 eV, where it can potentially probe couplings orders of magnitude below current and proposed laboratory experiments.
Collapse
|
2
|
Garcia E, Bales C, Patterson W, Zaslavsky A, Mitrović VF. Cryogenic probe for low-noise, high-frequency electronic measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:103902. [PMID: 36319326 DOI: 10.1063/5.0106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The design and performance of a low-noise, modular cryogenic probe, which is applicable to a wide range of measurements over a broad range of working frequencies, temperatures, and magnetic fields, is presented. The design of the probe facilitates the exchange of sample holders and sample-stage amplifiers, which, combined with its characteristic low transmission and reflection loss, make this design suitable for high precision or low sensitivity measurements. The specific example of measuring the shot noise of magnetic tunnel junctions is discussed. We highlight various design characteristics chosen specifically to expand the applicability of the probe to measurement techniques such as nuclear magnetic resonance.
Collapse
Affiliation(s)
- E Garcia
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - C Bales
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - W Patterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - A Zaslavsky
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - V F Mitrović
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
3
|
Billard J, Boulay M, Cebrián S, Covi L, Fiorillo G, Green A, Kopp J, Majorovits B, Palladino K, Petricca F, Roszkowski Chair L, Schumann M. Direct detection of dark matter-APPEC committee report. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:056201. [PMID: 35193133 DOI: 10.1088/1361-6633/ac5754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This report provides an extensive review of the experimental programme of direct detection searches of particle dark matter. It focuses mostly on European efforts, both current and planned, but does it within a broader context of a worldwide activity in the field. It aims at identifying the virtues, opportunities and challenges associated with the different experimental approaches and search techniques. It presents scientific and technological synergies, both existing and emerging, with some other areas of particle physics, notably collider and neutrino programmes, and beyond. It addresses the issue of infrastructure in light of the growing needs and challenges of the different experimental searches. Finally, the report makes a number of recommendations from the perspective of a long-term future of the field. They are introduced, along with some justification, in the opening overview and recommendations section and are next summarised at the end of the report. Overall, we recommend that the direct search for dark matter particle interactions with a detector target should be given top priority in astroparticle physics, and in all particle physics, and beyond, as a positive measurement will provide the most unambiguous confirmation of the particle nature of dark matter in the Universe.
Collapse
Affiliation(s)
- Julien Billard
- Univ Lyon, Université Lyon 1, CNRS/IN2P3, IP2I-Lyon, F-69622, Villeurbanne, France
| | - Mark Boulay
- Department of Physics, Carleton University, Ottawa, Canada
| | - Susana Cebrián
- Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Covi
- Institute for Theoretical Physics, Georg-August University, Goettingen, Germany
| | - Giuliana Fiorillo
- Physics Department, Università degli Studi 'Federico II' di Napoli and INFN Napoli, Naples, Italy
| | - Anne Green
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Joachim Kopp
- CERN, Geneva, Switzerland and Johannes Gutenberg University, Mainz, Germany
| | | | - Kimberly Palladino
- Department of Physics, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Physics, Oxford University, Oxford, United Kingdom
| | | | - Leszek Roszkowski Chair
- Astrocent, Nicolaus Copernicus Astronomical Center PAS, Warsaw, Poland
- National Centre for Nuclear Research, Warsaw, Poland
| | - Marc Schumann
- Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Blanchard JW, Ripka B, Suslick BA, Gelevski D, Wu T, Münnemann K, Barskiy DA, Budker D. Towards large-scale steady-state enhanced nuclear magnetization with in situ detection. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1208-1215. [PMID: 33826170 DOI: 10.1002/mrc.5161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale; however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop nuclear magnetic resonance [NMR] spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample. In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-[2,4,6-trimethylphenyl]-imidazol-2-ylidene; COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.
Collapse
Affiliation(s)
- John W Blanchard
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- NVision Imaging Technologies GmbH, Ulm, Germany
| | - Barbara Ripka
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dario Gelevski
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Teng Wu
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Mechanical Engineering and Process Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Danila A Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Dmitry Budker
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Physics, University of California, Berkeley, California, USA
| |
Collapse
|