1
|
Muhammad Ridho F, Julyanto Syachputra A, Dias Nur'aini A, Ulfah K, Faqih M, Nurhuda A. Pre-clinical and clinical efficacy of curcumin as an anti-inflammatory agent for periodontitis. A systematic review. REVISTA CIENTÍFICA ODONTOLÓGICA 2024; 12:e222. [PMID: 39912085 PMCID: PMC11792608 DOI: 10.21142/2523-2754-1204-2024-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction There is ongoing exploration into herbal treatments to identify adjunct therapies with minimal side effects. One such treatment involves curcumin from turmeric (Curcuma longa). This study aims to review the efficacy of curcumin as an anti-inflammatory agent for periodontitis along with the mechanisms of action involved. Methods A systematic review of pre-clinical and clinical studies published on Scopus, PubMed, ScienceDirect, and Google Scholar up to May 2024 was employed following the PRISMA guidelines. Three tools were used for risk of bias assessment, namely the QUIN tool for in vitro studies, the SYRCLE's RoB for in vivo studies, and the Cochrane RoB 2 for RCTs. Finally, nineteen studies were included for review. Results This study highlights curcumin's efficacy in addressing periodontitis through diverse mechanisms. Curcumin demonstrated efficacy in attenuating inflammation within periodontal tissue by inhibiting several pro-inflammatory cytokines and mediators such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinases (MMPs), prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, while concurrently increasing IL-4 and IL-10. In addition, several transcription factors such as nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 1 (STAT1) were also inhibited by curcumin. Administration of curcumin has additionally been demonstrated to reduce other biomarkers of periodontitis, including C-reactive protein (CRP), alkaline phosphatase (ALP), and procalcitonin (PCT). Conclusion Curcumin has been shown to be effective as an adjunct therapeutic agent for periodontitis due to its anti-inflammatory effects by reducing the inflammatory response through a diverse range of mechanisms of action.
Collapse
Affiliation(s)
- Fiki Muhammad Ridho
- Dental Profession Program, Faculty of Dental Medicine, Universitas Airlangga. Surabaya, Indonesia. Dental Profession Program Faculty of Dental Medicine Universitas Airlangga Surabaya Indonesia
| | - Andika Julyanto Syachputra
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada. Yogyakarta, Indonesia. Department of Biology Faculty of Biology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Anisa Dias Nur'aini
- Pharmacist Profession Program, Faculty of Pharmacy, Universitas Ahmad Dahlan. Yogyakarta, Indonesia. Pharmacist Profession Program Faculty of Pharmacy Universitas Ahmad Dahlan Yogyakarta Indonesia
| | - Kamailiya Ulfah
- Veterinarian Profession Program, Faculty of Veterinary Medicine, Universitas Airlangga. Surabaya, Indonesia. Veterinarian Profession Program Faculty of Veterinary Medicine Universitas Airlangga Surabaya Indonesia
| | - Muhamad Faqih
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia. Johor Bahru, Malaysia. Department of Bioprocess Engineering Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Andang Nurhuda
- Undergraduate Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Surabaya, Indonesia. Undergraduate Program Faculty of Mathematics and Natural Sciences Universitas Negeri Surabaya Surabaya Indonesia
| |
Collapse
|
2
|
Sethi G, Sood S, Bhardwaj SB, Jain A. In vitro evaluation of anti-microbial efficacy of Trigonella foenum-graecum and its constituents on oral biofilms. J Indian Soc Periodontol 2024; 28:304-311. [PMID: 39742064 PMCID: PMC11684565 DOI: 10.4103/jisp.jisp_540_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/19/2024] [Indexed: 01/03/2025] Open
Abstract
Background and Objective The extracts obtained from the leaves and seeds of Trigonella foenum-graecum (Fenugreek) are effective against various microbial infections. The phytoconstituents of Trigonella foenum-graecum have shown promising effects as anti-diabetics, anti-helmentic, anti-microbial, antifungal, and antipyretic, but its impact on oral pathogens is yet to be established. Therefore, the present study aimed to explore the antimicrobial efficacy of phytoconstituents of Trigonella foenum-graecum as compared to 0.2% chlorhexidine (CHX). Materials and Methods The methanolic extracts of Trigonella foenum-graecum i.e., fenugreek absolute (FA), diosgenin (DIO), and furanone (FU) were used in this study. The antimicrobial efficacy of these extracts was evaluated by testing the minimal inhibitory concentration, minimal bactericidal concentration (MBC), agar well-diffusion assay, colony-forming unit (CFU) count, and also by using confocal laser scanning microscopy (CLSM) against Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 35218, and Pseudomonas aeruginosa ATCC 27853. Results The results of the study demonstrated that Trigonella foenum-graecum has anti-microbial activity comparable to 0.2% CHX. Well-diffusion assay and CFU count assay of the extracts showed statistically significant (P < 0.001) results. MIC and MBC values were observed for FA, DIO, and FU compared to CHX against these selected test organisms. These results were confirmed by visual validation with CLSM. Conclusion The use of herbal alternatives in periodontics might prove to be advantageous. Trigonella foenum-graecum can be used as a promising alternative to CHX against S. aureus, E. faecalis, E. coli, and P. aeruginosa for the management of oral and periodontal infections.
Collapse
Affiliation(s)
- Geetanshu Sethi
- Department of Periodontics, Maharishi Markendeshwar College of Dental Science and Research, Ambala, Haryana, India
| | - Shaveta Sood
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Sonia Bhonchal Bhardwaj
- Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Ashish Jain
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
HR V, Daniel RA, Prabhu A, P S, Basavaraju S. Susceptibility of periodontal pathogens to a novel target-specific drug delivery system containing self-nanoemulsifying curcumin: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:67-73. [PMID: 38357336 PMCID: PMC10862046 DOI: 10.34172/japid.2023.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/02/2023] [Indexed: 02/16/2024]
Abstract
Background Long-term use of many classic chemotherapeutic agents as adjuncts in the management of periodontitis has adverse complications, leading to seeking out naturopathic remedies. Although curcumin has been investigated in managing periodontitis, its therapeutic benefits have not been fully explored due to its limited solubility in an aqueous medium. This study aimed to develop a novel target-specific drug delivery system containing 1% self-nanoemulsifying curcumin (SNEC) in a hydroxypropylmethylcellulose (HPMC) matrix and evaluate the susceptibility of periodontal pathogens to this system in vitro. Methods Its antibacterial activity against Tannerella forsythia, Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans was evaluated and compared to pure nano-curcumin and SNEC alone by estimating their minimum inhibitory concentrations (MIC). Results The antibacterial activity of pure nano-curcumin, SNEC, and SNEC in HPMC against the four periodontal pathogens evaluated in terms of MIC was recorded in the range of 0.2‒0.4, 0.4‒0.8, and 0.2‒0.8 µg/mL, respectively. However, the MIC of all three curcumin formulations against the periodontal pathogens tested was higher than that of the standard moxifloxacin. While both pure nano-curcumin and SNEC showed increasing values of inhibition zones with increasing concentrations on disk diffusion assay, lower concentrations of SNEC in HPMC did not show a zone of inhibition against the tested pathogens. Conclusion The novel delivery system containing SNEC in HPMC may be a potential adjunct in managing periodontitis due to its probable sustained antimicrobial activity against the tested periodontal pathogens.
Collapse
Affiliation(s)
- Veena HR
- Department of Periodontology, KLE Society’s Institute of Dental Sciences, Bengaluru, Karnataka
| | | | - Ashwin Prabhu
- Department of Periodontology, KLE Society’s Institute of Dental Sciences, Bengaluru, Karnataka
| | - Shilpa P
- KLE Society’s Institute of Dental Sciences, Bengaluru, Karnataka
| | - Suman Basavaraju
- Department of Periodontology, JSS Dental College & Hospital, Mysuru, India
| |
Collapse
|
4
|
Heidari H, Shojaei M, Askari G, Majeed M, Bagherniya M, Barreto GE, Sahebkar A. The impact of curcumin on migraine: A comprehensive review. Biomed Pharmacother 2023; 164:114910. [PMID: 37216708 DOI: 10.1016/j.biopha.2023.114910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Migraine, a neurovascular condition, is a chronic and lifelong disease that affects about 15% of the population worldwide. Although the exact pathophysiology and etiology of migraine are still unclear, oxidative stress, inflammation, and neuroendocrine imbalances are identified as the critical risk factors for migraine attacks. Curcumin is an active component and a polyphenolic diketone compound extracted from turmeric. Curcumin is a promising candidate for preventing and controlling migraine due to its anti‑inflammatory, antioxidative, anti-protein aggregate, and analgesic effects. In the present review, we have evaluated experimental and clinical studies investigating the impact of liposomal curcumin and nano-curcumin on the frequency and severity of migraine attacks in patients. Although the results are promising, more studies should be conducted in this area to show the exact efficacies of curcumin on clinical symptoms of migraine and investigate its potential mechanisms.
Collapse
Affiliation(s)
- Hajar Heidari
- Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhammed Majeed
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ, 08520, USA
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Res 2023; 37:1462-1487. [PMID: 36720711 DOI: 10.1002/ptr.7737] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
Curcumin is extracted from the rhizomes Curcuma longa L. It is known for its anti-inflammatory and anti-oxidant activities. Despite its safety and potential for use against various diseases, curcumin's utility is restricted due to its low oral bioavailability. Co-administration of curcumin along with piperine could potentially improve the bioavailability of curcumin. The present review aimed to provide an overview of the efficacy and safety of curcumin-piperine co-supplementation in human health. The findings of this comprehensive review show the beneficial effects of curcumin-piperine in improving glycemic indices, lipid profile and antioxidant status in diabetes, improving the inflammatory status caused by obesity and metabolic syndrome, reducing oxidative stress and depression in chronic stress and neurological disorders, also improving chronic respiratory diseases, asthma and COVID-19. Further high-quality clinical trial studies are needed to firmly establish the clinical efficacy of the curcumin-piperine supplement.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Sa’ad MA, Kavitha R, Fuloria S, Fuloria NK, Ravichandran M, Lalitha P. Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment. Antibiotics (Basel) 2022; 11:antibiotics11020207. [PMID: 35203811 PMCID: PMC8868241 DOI: 10.3390/antibiotics11020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Periodontal disease (PD) is complex polymicrobial disease which destroys tooth-supporting tissue. Although various synthetic inhibitors of periodontitis-triggering pathogens have been recognized, their undesirable side effects limit their application. Hence, the present study intended to perform the synthesis, characterization, antimicrobial evaluation, and cytotoxicity analysis of novel benzamidine analogues (NBA). This study involved the synthesis of novel imino bases of benzamidine (4a–c), by reacting different aromatic aldehydes with 2-(4-carbamimidoylphenoxy) acetohydrazide (3), which was synthesized by the hydrazination of ethyl 2-(4-carbamimidoylphenoxy) acetate (2), the derivative of 4-hydroxybenzene carboximidamide (1). This was followed by characterization using FTIR, 1H, 13C NMR and mass spectrometry. All synthesized compounds were further tested for antimicrobial potential against PD-triggering pathogens by the micro broth dilution method. The cytotoxicity analysis of the NBA against HEK 293 cells was conducted using an MTT assay. The present study resulted in a successful synthesis of NBA and elucidated their structures. The synthesized NBA exhibited significant antimicrobial activity values between 31.25 and 125 µg/mL against tested pathogens. All NBA exhibited weak cytotoxicity against HEK 293 cells at 7.81 µg, equally to chlorhexidine at 0.2%. The significant antimicrobial activity of NBA against PD-triggering pathogens supports their potential application in periodontitis treatment.
Collapse
Affiliation(s)
- Mohammad Auwal Sa’ad
- Department of Biochemistry, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Ramasamy Kavitha
- Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Shivkanya Fuloria
- Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, India
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| | - Manickam Ravichandran
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| | - Pattabhiraman Lalitha
- Department of Biochemistry, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia;
- Correspondence: (N.K.F.); (M.R.); (P.L.); Tel.: +60-143-034-057 (N.K.F.)
| |
Collapse
|