1
|
Ramakrishnan P, Ramprasath R, Jalaludeen AM, Jayakumar R, Jolius G, Balu R, Mohamed SB, Sridhar TM, Gunasekaran SS, Davoodbasha M, Thajuddin N, Gnanasekaran L, Sundaram T. Electrospun nanofibers of collagen and chitosan for tissue engineering and drug delivery applications: A review. Int J Biol Macromol 2025; 296:139663. [PMID: 39793786 DOI: 10.1016/j.ijbiomac.2025.139663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Tissue engineering plays a vital role in the medical field that addresses the repair, regeneration, and replacement of damaged tissues or organs. The development of drug-eluting electrospun nanofiber composed of biological macromolecules plays a key role in providing localized drug delivery and structural support. This review examines the recent development and impact of electrospun nanofibers in the field of tissue engineering and explores their potential applications. This review also investigates into the fabrication techniques of nanofibers, highlighting the use of biopolymers like collagen and chitosan, chiefly, focuses on understanding the mechanisms of drug-releasing features of these nanofibers. Studies concerning the medical applications of these nanofibers, such as wound healing, skin regeneration, bone tissue engineering, and neural repair, were also reviewed. Beyond the application in tissue regeneration, this review also explores the potential efficacy of nanofibres in cancer therapy, antibacterial activity, enzyme immobilization, and biosensing applications. This study provides an up-to-date critical insight into the applications of electrospun nanofiber application and key scalable production processes, underscoring the potential economic impacts of advanced wound care technologies. While outlining current challenges, this paper also offers future perspectives on the design, application, and potential expansion of drug-eluting electrospun fibers in medical sciences, ultimately showcasing their pivotal role in advancing therapeutic outcomes.
Collapse
Affiliation(s)
- Praveen Ramakrishnan
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India.
| | - Ramakrishnan Ramprasath
- Abinnovus Consulting Private Limited, TBI-University of Madras, Chennai 600025, Tamil Nadu, India
| | - Abdulkadhar Mohamed Jalaludeen
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - R Jayakumar
- Abinnovus Consulting Private Limited, TBI-University of Madras, Chennai 600025, Tamil Nadu, India
| | - Gimbun Jolius
- Center for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
| | - Ranganathan Balu
- CanBrs Therapeutics Private Limited, Indian Institute of Technology Madras - Research Park, Chennai, Tamil Nadu, India
| | - S B Mohamed
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - T M Sridhar
- Department of Analytical Chemistry, University of Madras, Chennai 600025, Tamil Nadu, India
| | - Sivagaami Sundari Gunasekaran
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - MubarakAli Davoodbasha
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - Nooruddin Thajuddin
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | | | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
L J, Kamaraj S, Kandasamy R, Alagarsamy S. Electrospinning: A New Frontier in Peptide Therapeutics. AAPS PharmSciTech 2025; 26:69. [PMID: 40011310 DOI: 10.1208/s12249-025-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The nanofiber technology has recently undergone an unprecedented transformation, finding widespread utilities across diverse scientific disciplines. It is noteworthy that electrospinning approaches have emerged as an adaptable and successful approach to generate fibers ranging in rapidly as a class of therapeutic agents with a high level of target specificity. Peptides encounter several challenges as drugs, including swift breakdown by the body, rapid elimination from the bloodstream, inadequate stability, and restricted ability to cross cell membranes. This renders it challenging to employ them as drugs. However, electrospun nanofibers might address these problems. This review explores the promising potential of electrospinning nanofibers for peptide delivery. We delve into recent advancements in this technique, highlighting its effectiveness in overcoming challenges associated with peptide drug delivery. It provides an analysis of the trends identified in the use of the electrospinning technique and its role in peptide drug delivery systems, based on a review of data collected over a period of five to seven years.
Collapse
Affiliation(s)
- Jeyanthi L
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sivadharshini Kamaraj
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
4
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Ruan D, Wang J, Ding T, Chen L, Du Y, Ruan Y, Cui W, Feng W. Targeting Adhesive Tumor Adventitia via Injectable Electrospun Short Fibers in Perfusion of Intraperitoneal Sporadic Tumors. SMALL METHODS 2023; 7:e2300681. [PMID: 37670530 DOI: 10.1002/smtd.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/07/2023]
Abstract
Intraperitoneal sporadic tumor is a common and complicated syndrome in cancers, causing a high rate of death, and people find that intraperitoneal chemotherapy (IPC) can treat intraperitoneal sporadic tumors better than intravenous chemotherapy and surgery. However, the effectiveness and side effects of IPC are controversial, and the operation process of IPC is complicated. Herein, the injectable paclitaxel-loaded (PTX-loaded) electrospun short fibers are constructed through a series process of electrospinning, homogenizing, crosslinking, and subsequent polydopamine coating and folate acid (FA) modification. The evenly dispersed short fibers exhibited effective tumor cell killing and good injectable ability, which is convenient to use and greatly improved the complex operation procedure. Mussel-like protein poly-dopamine coating and FA modification endowed short fibers with the ability of targeted adhesion to tumors, and therefore the short fibers further acted as a kind of micro membrane that could release drugs to tumors at close range, maintaining local high drug concentration and prevent paclitaxel killing normal tissues. Thus, the target-adhesive injectable electrospun short fibers are expected to be the potential candidate for cancer treatment, especially the intraperitoneal sporadic tumors, which are hard to treat by surgery or intravenous chemotherapy.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yiyin Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
6
|
Louis L, Chee BS, McAfee M, Nugent M. Electrospun Drug-Loaded and Gene-Loaded Nanofibres: The Holy Grail of Glioblastoma Therapy? Pharmaceutics 2023; 15:1649. [PMID: 37376095 DOI: 10.3390/pharmaceutics15061649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
To date, GBM remains highly resistant to therapies that have shown promising effects in other cancers. Therefore, the goal is to take down the shield that these tumours are using to protect themselves and proliferate unchecked, regardless of the advent of diverse therapies. To overcome the limitations of conventional therapy, the use of electrospun nanofibres encapsulated with either a drug or gene has been extensively researched. The aim of this intelligent biomaterial is to achieve a timely release of encapsulated therapy to exert the maximal therapeutic effect simultaneously eliminating dose-limiting toxicities and activating the innate immune response to prevent tumour recurrence. This review article is focused on the developing field of electrospinning and aims to describe the different types of electrospinning techniques in biomedical applications. Each technique describes how not all drugs or genes can be electrospun with any method; their physico-chemical properties, site of action, polymer characteristics and the desired drug or gene release rate determine the strategy used. Finally, we discuss the challenges and future perspectives associated with GBM therapy.
Collapse
Affiliation(s)
- Lynn Louis
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Bor Shin Chee
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91YW50 Sligo, Ireland
| | - Michael Nugent
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| |
Collapse
|
7
|
Hu Y, Zhang H, Wei H, Liao M, Chen X, Xing J, Duan L, Cheng C, Lu W, Yang X, Wu P, Wang H, Xie J, Chai R. Conductive PS inverse opals for regulating proliferation and differentiation of neural stem cells. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
8
|
Talimi R, Shahsavari Z, Dadashzadeh S, Ten Hagen TLM, Haeri A. Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity. Drug Dev Ind Pharm 2022; 48:694-707. [PMID: 36594256 DOI: 10.1080/03639045.2022.2161559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Breast cancer accounts for significant mortality worldwide. Here, we develop a localized, sustained-release delivery system for breast cancer therapy. METHODS Sirolimus (SIR) core-shell nanofibers (NFs) are fabricated by coaxial electrospinning with poly(ε-caprolactone) (PCL) for the core and chitosan and PCL for the shell. The NFs were characterized by SEM, AFM, TEM, XRD, FTIR, water uptake, water contact angle, mechanical properties, drug content, and in vitro release. In vitro and in vivo anticancer effects were investigated. RESULTS A sustained release behavior is observed during 480 h that is more extended compared to monoaxial NFs. In vitro cytotoxicity and Annexin V/propidium iodide assays indicate that SIR-loaded coaxial NFs are effective in inhibiting proliferation of 4T1 and MCF-7 cells. Implantation of SIR NFs in 4T1 breast tumor-bearing mice inhibits tumor growth significantly compared to free drug. Histopathological examination shows that suppression of tumor growth by SIR NFs is associated with apoptotic cell death. Furthermore, anti-cancer effects are also confirmed by decreased expression levels of Ki-67, MMP-2, and MMP-9. Histological observation of organs, serological analyses, and the lack of body weight changes indicate in vivo safety of SIR NFs. CONCLUSIONS Altogether, we show here that incorporation of SIR into core-shell NFs could act as an effective drug release depot and induce a sustained antitumor response.
Collapse
Affiliation(s)
- Rozhin Talimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lin F, Wang Z, Xiang L, Wu L, Liu Y, Xi X, Deng L, Cui W. Transporting Hydrogel via Chinese Acupuncture Needles for Lesion Positioning Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200079. [PMID: 35404511 PMCID: PMC9189641 DOI: 10.1002/advs.202200079] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Lesion positioning therapy optimizes medical treatment by directly targeting lesions. However, strong physical barriers greatly hinder its wide use. Here, the Chinese acupuncture needles (CA-needles) with a screw-thread structure at the tip (ST-needle) and the hydrogel with the function of adhesive metal and loaded drug sustained-release structure are designed, through the minimally invasive and precise positioning of lesions by ST-needles, the dry-wet conversion of hydrogel with absorbing fluids and swelling, and the rotation back of ST-needles, the hydrogel is precisely positioned in the subchondral bone with physical barrier to achieve precise positioning therapy for lesions. In vitro experiments show that the ST-needle penetrates the physical barrier of cartilage and enters the subchondral bone. Simultaneously, the hydrogel transfer efficiency of the ST-needle (73.25%) is significantly higher than that of the CA-needle (29.92%) due to the protective effect of the screw-thread structure. In vivo experiments demonstrate that precise positioning in subchondral bone in osteoarthritis rats with ST-needles effectively inhibits abnormal subchondral bone remodeling, alleviating the degeneration and degradation of cartilage. Therefore, ST-needles achieve lesion positioning therapy through minimally invasive penetration of physical barriers, precisely positioning within lesions, and delivering hydrogel to release drugs.
Collapse
Affiliation(s)
- Feng Lin
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhen Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Xiang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Longxi Wu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yupu Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Xiaobing Xi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
10
|
Aggregation-induced emission active luminescent polymeric nanofibers: From design, synthesis, fluorescent mechanism to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Di Salle A, Viscusi G, Di Cristo F, Valentino A, Gorrasi G, Lamberti E, Vittoria V, Calarco A, Peluso G. Antimicrobial and Antibiofilm Activity of Curcumin-Loaded Electrospun Nanofibers for the Prevention of the Biofilm-Associated Infections. Molecules 2021; 26:molecules26164866. [PMID: 34443457 PMCID: PMC8400440 DOI: 10.3390/molecules26164866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.
Collapse
Affiliation(s)
- Anna Di Salle
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Anna Valentino
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani, 2, 28100 Novara, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: (G.G.); (A.C.)
| | - Elena Lamberti
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Vittoria Vittoria
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Anna Calarco
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Correspondence: (G.G.); (A.C.)
| | - Gianfranco Peluso
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| |
Collapse
|