1
|
Singh S, Rai KK, Shankar A, Dubey SK, Raj A, Rai R. Comparative analysis of DNA binding and abiotic stress tolerance of Dps All4145 and its homologs in Anabaena PCC 7120. Mol Biol Rep 2025; 52:469. [PMID: 40392388 DOI: 10.1007/s11033-025-10590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND DNA-binding proteins under starvation (Dps) are mini-ferritins that sequester iron at the ferroxidase center (FOC) of a hollow protein cage. This study characterizes the novel Dps-All4145. Discrepancies between computational predictions and experimental stress responses were addressed using an integrated computational and experimental approach. Additionally, site-directed mutagenesis was performed to explore the mechanistic link between DNA binding and ferroxidation. METHODS AND RESULTS This study involves the molecular characterization of the novel Dps-All4145 and a comparative biochemical and structural analysis of four Dps homologs (Alr3808, All0458, All1173, and All4145) from Anabaena sp. PCC 7120. In-silico and wet lab approaches were employed to assess their biochemical functions, including iron oxidation and DNA protection. The study confirmed that iron oxidation and DNA protection are common attributes of all four Dps homologs. Additionally, all homologs contributed to abiotic stress management. Among them, Alr3808 exhibited the highest efficiency in iron oxidation and DNA protection. Site-directed mutagenesis of Alr3808K49R led to the loss of DNA-binding ability and a 60% reduction in iron oxidation, indicating the crucial role of the N-terminal lysine (K49) residue in these activities. CONCLUSION This study provides first-hand insights into the molecular functions of Dps proteins in Anabaena sp. PCC 7120 and highlights the unique significance of K49 in Alr3808 for iron oxidation and DNA binding.
Collapse
Affiliation(s)
- Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221305, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221305, India
- Department of Biotechnology, Amity School of Biological Sciences, Amity University Punjab, Mohali, Punjab, 140306, India
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Gujrat, 382740, India
| | - Santosh Kumar Dubey
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221305, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221305, India
| | - Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221305, India.
| |
Collapse
|
2
|
Williams SM, Chatterji D. Dps Functions as a Key Player in Bacterial Iron Homeostasis. ACS OMEGA 2023; 8:34299-34309. [PMID: 37779979 PMCID: PMC10536872 DOI: 10.1021/acsomega.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Iron plays a vital role in the maintenance of life, being central to various cellular processes, from respiration to gene regulation. It is essential for iron to be stored in a nontoxic and readily available form. DNA binding proteins under starvation (Dps) belong to the ferritin family of iron storage proteins and are adept at storing iron in their hollow protein shells. Existing solely in prokaryotes, these proteins have the additional functions of DNA binding and protection from oxidative stress. Iron storage proteins play a functional role in storage, release, and transfer of iron and therefore are central to the optimal functioning of iron homeostasis. Here we review the multifarious properties of Dps through relevant biochemical and structural studies with a focus on iron storage and ferroxidation. We also examine the role of Dps as a possible candidate as an iron donor to iron-sulfur (Fe-S) clusters, which are ubiquitous to many biological processes.
Collapse
Affiliation(s)
- Sunanda Margrett Williams
- Institute
of Structural and Molecular Biology, Birkbeck,
University of London, Malet Street, London WC1E
7HX, United Kingdom
| | - Dipankar Chatterji
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Guerra JPL, Penas D, Tavares P, Pereira AS. Influence of Cupric (Cu 2+) Ions on the Iron Oxidation Mechanism by DNA-Binding Protein from Starved Cells (Dps) from Marinobacter nauticus. Int J Mol Sci 2023; 24:10256. [PMID: 37373403 DOI: 10.3390/ijms241210256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Dps proteins (DNA-binding proteins from starved cells) are multifunctional stress defense proteins from the Ferritin family expressed in Prokarya during starvation and/or acute oxidative stress. Besides shielding bacterial DNA through binding and condensation, Dps proteins protect the cell from reactive oxygen species by oxidizing and storing ferrous ions within their cavity, using either hydrogen peroxide or molecular oxygen as the co-substrate, thus reducing the toxic effects of Fenton reactions. Interestingly, the interaction between Dps and transition metals (other than iron) is a known but relatively uncharacterized phenomenon. The impact of non-iron metals on the structure and function of Dps proteins is a current topic of research. This work focuses on the interaction between the Dps from Marinobacter nauticus (a marine facultative anaerobe bacterium capable of degrading petroleum hydrocarbons) and the cupric ion (Cu2+), one of the transition metals of greater biological relevance. Results obtained using electron paramagnetic resonance (EPR), Mössbauer and UV/Visible spectroscopies revealed that Cu2+ ions bind to specific binding sites in Dps, exerting a rate-enhancing effect on the ferroxidation reaction in the presence of molecular oxygen and directly oxidizing ferrous ions when no other co-substrate is present, in a yet uncharacterized redox reaction. This prompts additional research on the catalytic properties of Dps proteins.
Collapse
Affiliation(s)
- João P L Guerra
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Daniela Penas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro Tavares
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alice S Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Condensation and Protection of DNA by the Myxococcus xanthus Encapsulin: A Novel Function. Int J Mol Sci 2022; 23:ijms23147829. [PMID: 35887179 PMCID: PMC9321382 DOI: 10.3390/ijms23147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Encapsulins are protein nanocages capable of harboring smaller proteins (cargo proteins) within their cavity. The function of the encapsulin systems is related to the encapsulated cargo proteins. The Myxococcus xanthus encapsulin (EncA) naturally encapsulates ferritin-like proteins EncB and EncC as cargo, resulting in a large iron storage nanocompartment, able to accommodate up to 30,000 iron atoms per shell. In the present manuscript we describe the binding and protection of circular double stranded DNA (pUC19) by EncA using electrophoretic mobility shift assays (EMSA), atomic force microscopy (AFM), and DNase protection assays. EncA binds pUC19 with an apparent dissociation constant of 0.3 ± 0.1 µM and a Hill coefficient of 1.4 ± 0.1, while EncC alone showed no interaction with DNA. Accordingly, the EncAC complex displayed a similar DNA binding capacity as the EncA protein. The data suggest that initially, EncA converts the plasmid DNA from a supercoiled to a more relaxed form with a beads-on-a-string morphology. At higher concentrations, EncA self-aggregates, condensing the DNA. This process physically protects DNA from enzymatic digestion by DNase I. The secondary structure and thermal stability of EncA and the EncA-pUC19 complex were evaluated using synchrotron radiation circular dichroism (SRCD) spectroscopy. The overall secondary structure of EncA is maintained upon interaction with pUC19 while the melting temperature of the protein (Tm) slightly increased from 76 ± 1 °C to 79 ± 1 °C. Our work reports, for the first time, the in vitro capacity of an encapsulin shell to interact and protect plasmid DNA similarly to other protein nanocages that may be relevant in vivo.
Collapse
|
5
|
Chesnokov Y, Mozhaev A, Kamyshinsky R, Gordienko A, Dadinova L. Structural Insights into Iron Ions Accumulation in Dps Nanocage. Int J Mol Sci 2022; 23:ijms23105313. [PMID: 35628121 PMCID: PMC9140674 DOI: 10.3390/ijms23105313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/05/2023] Open
Abstract
Dps (DNA-binding protein from starved cells) is well known for the structural protection of bacterial DNA by the formation of highly ordered intracellular assemblies under stress conditions. Moreover, this ferritin-like protein can perform fast oxidation of ferrous ions and subsequently accumulate clusters of ferric ions in its nanocages, thus providing the bacterium with physical and chemical protection. Here, cryo-electron microscopy was used to study the accumulation of iron ions in the nanocage of a Dps protein from Escherichia coli. We demonstrate that Fe2+ concentration in the solution and incubation time have an insignificant effect on the volume and the morphology of iron minerals formed in Dps nanocages. However, an increase in the Fe2+ level leads to an increase in the proportion of larger clusters and the clusters themselves are composed of discrete ~1-1.5 nm subunits.
Collapse
Affiliation(s)
- Yury Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Roman Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Alexander Gordienko
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Correspondence: ; Tel.: +7-(499)-135-62-00
| |
Collapse
|
6
|
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength. Int J Mol Sci 2022; 23:ijms23094871. [PMID: 35563263 PMCID: PMC9103930 DOI: 10.3390/ijms23094871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.
Collapse
|
7
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Caldas Nogueira ML, Pastore AJ, Davidson VL. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch Biochem Biophys 2021; 705:108917. [PMID: 33991497 PMCID: PMC8165033 DOI: 10.1016/j.abb.2021.108917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxo-bridged diiron proteins are a distinct class of non-heme iron proteins. Their active sites are composed of two irons that are coordinated by amino acid side chains, and a bridging oxygen that interacts with each iron. These proteins are members of the ferritin superfamily and share the structural feature of a four α-helix bundle that provides the residues that coordinate the irons. The different proteins also display a wide range of structures and functions. A prototype of this family is hemerythrin, which functions as an oxygen transporter. Several other hemerythrin-like proteins have been described with a diversity of functions including oxygen and iron sensing, and catalytic activities. Rubrerythrins react with hydrogen peroxide and rubrerythrin-like proteins possess a rubredoxin domain, in addition to the oxo-bridged diiron center. Other redox enzymes with oxo-bridged irons include flavodiiron proteins that act as O2 or NO reductases, ribonucleotide reductase and methane monooxygenase. Ferritins have an oxo-bridged diiron in the ferroxidase center of the protein, which plays a role in the iron storage function of these proteins. There are also bacterial ferritins that exhibit catalytic activities. The structures and functions of this broad class of oxo-bridged diiron proteins are described and compared in this review.
Collapse
Affiliation(s)
- Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|