1
|
Guo Y, Wang F, Zhou Y, Wang B, Wang C, Hu T, Wu D. Exploring Negative Feedback Mechanisms in the PTEN-ACE Axis: Application of Electrosorb Hydrogel-Based Gene Delivery for Intervertebral Disc Regeneration. Int J Biol Sci 2025; 21:3416-3443. [PMID: 40520007 PMCID: PMC12160554 DOI: 10.7150/ijbs.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/23/2025] [Indexed: 06/18/2025] Open
Abstract
Intervertebral disc degeneration (IDD), along with associated low back pain, stands as a primary cause of disability. The renin-angiotensin-aldosterone system has been linked to IDD; however, the mechanisms underlying this relationship have not been determined. In this study, the role of angiotensin-converting enzyme (ACE), a key synthetase in the system, in IDD and its regulatory mechanism were evaluated. Our findings revealed that downregulating ACE alleviates IDD. Additionally, phosphatase and tensin homolog (PTEN) regulated ACE through tripartite motif-containing 63 (TRIM63)-mediated K48-linked ubiquitination. PTEN dephosphorylated TRIM63, while polo-like kinase 1 (PLK1) phosphorylated TRIM63 at Ser67 and Ser69, two crucial sites for the interaction between ACE and TRIM63. Importantly, this regulatory axis also influenced endoplasmic reticulum autophagy by modulating O-GlcNAc modification, highlighting its significant role in the regulation of IDD. Furthermore, we developed a chitosan-virus electrosorb hydrogel for IDD repair therapy using lentivirus-mediated gene editing. The hydrogel exhibited excellent swelling, degradation, release rates, and biocompatibility. Specific gene editing by the chitosan-virus electrosorb hydrogel could reduce IDD in rats. These findings support the efficacy of modulating the PTEN-ACE pathway and O-GlcNAc modification and the therapeutic value of chitosan-virus electrosorb hydrogels for IDD.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Zhou
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bijun Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Tsukamoto Y, Tsukamoto N, Saiki W, Tashima Y, Furukawa JI, Kizuka Y, Narimatsu Y, Clausen H, Takeuchi H, Okajima T. Characterization of galactosyltransferase and sialyltransferase genes mediating the elongation of the extracellular O-GlcNAc glycans. Biochem Biophys Res Commun 2024; 703:149610. [PMID: 38359610 DOI: 10.1016/j.bbrc.2024.149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, β4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsumi Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Hu ZF, Zhong K, Cao H. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Curr Opin Chem Biol 2024; 78:102417. [PMID: 38141531 DOI: 10.1016/j.cbpa.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins, which plays essential roles in regulating the biological functions of proteins. Efficient and versatile methods for the synthesis of homogeneous and well-defined N- and O-glycans remain an urgent need for biological studies and biomedical applications. Despite their structural complexity, tremendous progress has been made in the synthesis of N- and O-glycans in recent years. This review discusses some recent advances in the enzymatic and chemoenzymatic synthesis of N- and O-glycans.
Collapse
Affiliation(s)
- Zhi-Fei Hu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Kan Zhong
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
5
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|