1
|
Zhang ZJ, Wang HF, Lian TY, Zhou YP, Xu XQ, Guo F, Wei YP, Li JY, Sun K, Liu C, Pan LR, Ren M, Nie L, Dai HL, Jing ZC. Human Plasma IgG N-Glycome Profiles Reveal a Proinflammatory Phenotype in Chronic Thromboembolic Pulmonary Hypertension. Hypertension 2023; 80:1929-1939. [PMID: 37449418 DOI: 10.1161/hypertensionaha.123.21408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The pathological mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is not fully understood, and inflammation has been reported to be one of its etiological factors. IgG regulates systemic inflammatory homeostasis, primarily through its N-glycans. Little is known about IgG N-glycosylation in CTEPH. We aimed to map the IgG N-glycome of CTEPH to provide new insights into its pathogenesis and discover novel markers and therapies. METHODS We characterized the plasma IgG N-glycome of patients with CTEPH in a discovery cohort and validated our results in an independent validation cohort using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Thereafter, we correlated IgG N-glycans with clinical parameters and circulating inflammatory cytokines in patients with CTEPH. Furthermore, we determined IgG N-glycan quantitative trait loci in CTEPH to reveal partial mechanisms underlying glycan changes. RESULTS Decreased IgG galactosylation representing a proinflammatory phenotype was found in CTEPH. The distribution of IgG galactosylation showed a strong association with NT-proBNP (N-terminal pro-B-type natriuretic peptide) in CTEPH. In line with the glycomic findings, IgG pro-/anti-inflammatory N-glycans correlated well with a series of inflammatory markers and gene loci that have been reported to be involved in the regulation of these glycans or inflammatory immune responses. CONCLUSIONS This is the first study to reveal the full signature of the IgG N-glycome of a proinflammatory phenotype and the genes involved in its regulation in CTEPH. Plasma IgG galactosylation may be useful for evaluating the inflammatory state in patients with CTEPH; however, this requires further validation. This study improves our understanding of the mechanisms underlying CTEPH inflammation from the perspective of glycomics.
Collapse
Affiliation(s)
- Ze-Jian Zhang
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Fang Wang
- Department of Biochemistry and Molecular Biology, the School of Basic Medicine Sciences, Hebei Medical University, Shijiazhuang, China (H.-F.W., L.N.)
| | - Tian-Yu Lian
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ping Zhou
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi-Qi Xu
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Guo
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Li
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Liu
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Rong Pan
- Global Health Drug Discovery Institute, Beijing, China (L.-R.P.)
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, China (M.R.)
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, the School of Basic Medicine Sciences, Hebei Medical University, Shijiazhuang, China (H.-F.W., L.N.)
| | - Hai-Long Dai
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, China (H.-L.D.)
| | - Zhi-Cheng Jing
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Meng X, Wang F, Gao X, Wang B, Xu X, Wang Y, Wang W, Zeng Q. Association of IgG N-glycomics with prevalent and incident type 2 diabetes mellitus from the paradigm of predictive, preventive, and personalized medicine standpoint. EPMA J 2023; 14:1-20. [PMID: 36866157 PMCID: PMC9971369 DOI: 10.1007/s13167-022-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Objectives Type 2 diabetes mellitus (T2DM), a major metabolic disorder, is expanding at a rapidly rising worldwide prevalence and has emerged as one of the most common chronic diseases. Suboptimal health status (SHS) is considered a reversible intermediate state between health and diagnosable disease. We hypothesized that the time frame between the onset of SHS and the clinical manifestation of T2DM is the operational area for the application of reliable risk assessment tools, such as immunoglobulin G (IgG) N-glycans. From the viewpoint of predictive, preventive, and personalized medicine (PPPM/3PM), the early detection of SHS and dynamic monitoring by glycan biomarkers could provide a window of opportunity for targeted prevention and personalized treatment of T2DM. Methods Case-control and nested case-control studies were performed and consisted of 138 and 308 participants, respectively. The IgG N-glycan profiles of all plasma samples were detected by an ultra-performance liquid chromatography instrument. Results After adjustment for confounders, 22, five, and three IgG N-glycan traits were significantly associated with T2DM in the case-control setting, baseline SHS, and baseline optimal health participants from the nested case-control setting, respectively. Adding the IgG N-glycans to the clinical trait models, the average area under the receiver operating characteristic curves (AUCs) of the combined models based on repeated 400 times fivefold cross-validation differentiating T2DM from healthy individuals were 0.807 in the case-control setting and 0.563, 0.645, and 0.604 in the pooled samples, baseline SHS, and baseline optimal health samples of nested case-control setting, respectively, which presented moderate discriminative ability and were generally better than models with either glycans or clinical features alone. Conclusions This study comprehensively illustrated that the observed altered IgG N-glycosylation, i.e., decreased galactosylation and fucosylation/sialylation without bisecting GlcNAc, as well as increased galactosylation and fucosylation/sialylation with bisecting GlcNAc, reflects a pro-inflammatory state of T2DM. SHS is an important window period of early intervention for individuals at risk for T2DM; glycomic biosignatures as dynamic biomarkers have the ability to identify populations at risk for T2DM early, and the combination of evidence could provide suggestive ideas and valuable insight for the PPPM of T2DM. Supplementary information The online version contains supplementary material available at 10.1007/s13167-022-00311-3.
Collapse
Affiliation(s)
- Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Fei Wang
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xiangyang Gao
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Biyan Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027 Australia
| | - Qiang Zeng
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| |
Collapse
|
3
|
Landini A, Trbojević-Akmačić I, Navarro P, Tsepilov YA, Sharapov SZ, Vučković F, Polašek O, Hayward C, Petrović T, Vilaj M, Aulchenko YS, Lauc G, Wilson JF, Klarić L. Genetic regulation of post-translational modification of two distinct proteins. Nat Commun 2022; 13:1586. [PMID: 35332118 PMCID: PMC8948205 DOI: 10.1038/s41467-022-29189-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications diversify protein functions and dynamically coordinate their signalling networks, influencing most aspects of cell physiology. Nevertheless, their genetic regulation or influence on complex traits is not fully understood. Here, we compare the genetic regulation of the same PTM of two proteins - glycosylation of transferrin and immunoglobulin G (IgG). By performing genome-wide association analysis of transferrin glycosylation, we identify 10 significantly associated loci, 9 of which were not reported previously. Comparing these with IgG glycosylation-associated genes, we note protein-specific associations with genes encoding glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation of these proteins is thus genetically regulated by both shared and protein-specific mechanisms.
Collapse
Affiliation(s)
- Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Pau Navarro
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Yakov A Tsepilov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia.,Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Sodbo Z Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | | | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Split, Croatia.,Algebra University College, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Yurii S Aulchenko
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom. .,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|