1
|
Ahmed H, Zaky MY, M A Rashed M, Almoiliqy M, Al-Dalali S, Eldin ZE, Bashari M, Cheikhyoussef A, Alsalamah SA, Ibrahim Alghonaim M, Alhudhaibi AM, Wang J, Jiang LP. UPLC-qTOF-MS phytochemical profile of Commiphora gileadensis leaf extract via integrated ultrasonic-microwave-assisted technique and synthesis of silver nanoparticles for enhanced antibacterial properties. ULTRASONICS SONOCHEMISTRY 2024; 107:106923. [PMID: 38815489 PMCID: PMC11157276 DOI: 10.1016/j.ultsonch.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The utilization of metallic nanoparticles in bio-nanofabrication holds significant potential in the field of applied research. The current study applied and compared integrated ultrasonic-microwave-assisted extraction (US/MICE), ultrasonic extraction (USE), microwave-assisted extraction (MICE), and maceration (MAE) to extract total phenolic content (TPC). In addition, the study examined the antioxidant activity of Commiphora gileadensis (Cg) leaf. The results demonstrated that the TPC of US/MICE exhibited the maximum value at 59.34 ± 0.007 mg GAE/g DM. Furthermore, at a concentration of 10 μg/mL, TPC displayed a significant scavenging effect on DPPH (56.69 %), with an EC50 (6.48 μg/mL). Comprehensive metabolite profiling of the extract using UPLC-qTOF-MS/MS was performed to identify active agents. A total of 64 chromatographic peaks were found, out of which 60 were annotated. The most prevalent classes of metabolites found were polyphenols (including flavonoids and lignans), organic compounds and their derivatives, amides and amines, terpenes, and fatty acid derivatives. Transmission electron microscopy (TEM) revealed the aggregate size of the synthesized nanoparticles and the spherical shape of C. gileadensis-mediated silver nanoparticles (Cg-AgNPs). The nanoparticles had a particle size ranging from 7.7 to 42.9 nm. The Cg-AgNPs exhibited more inhibition zones against S. aureus and E. coli. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cg-extract, AgNPs, and Cg-AgNPs were also tested. This study demonstrated the feasibility of using combined ultrasonic-microwave-assisted extraction to separate and extract chemicals from C. gileadensis on a large scale. These compounds have potential use in the pharmaceutical industry. Combining antibacterial and biocompatible properties in materials is vital for designing new materials for biomedical applications. Additionally, the results showed that the biocompatibility of the Ag-NPs using C. gileadensis extracts demonstrated outstanding antibacterial properties.
Collapse
Affiliation(s)
- Hani Ahmed
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, Anhui, China
| | - Marwan Almoiliqy
- Department of Medicine and Health Science, College of Medicine and Health Science, University of Science and Technology, Aden, Yemen
| | - Sam Al-Dalali
- Department of Food Science and Technology, Ibb University, Ibb 70270, Yemen
| | - Zienab E Eldin
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Mohanad Bashari
- Department of Food Science and Human Nutrition, College of Applied and Health Sciences, A'Sharqiyah University, Ibra, Oman
| | - Ahmad Cheikhyoussef
- Science and Technology Division, Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Li-Ping Jiang
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|