Yu S, Pan J, Xu M, Chen Y, Li P, Hu H. Antibacterial activity and mechanism of colistin-loaded polymeric nanoparticles for combating multidrug-resistant Pseudomonas aeruginosa biofilms: A synergistic approach.
Int J Biol Macromol 2024;
282:136757. [PMID:
39437944 DOI:
10.1016/j.ijbiomac.2024.136757]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Multidrug-resistant P. aeruginosa (MDR-P. aeruginosa), associated with elevated morbidity, mortality, and readmission rates, presents a formidable challenge to eradication due to its robust resistance to antimicrobial agents and biofilm formation. Herein, self-assembling nanoparticles (NO-PE/PLL NPs) comprised of NO donor-conjugated γ-polyglutamic acid (GSNO-PGA), epsilon-poly-l-lysine (PLL) and colistin were fabricated. The negatively charged NO-PE/PLL NPs exhibited effective penetration through airway mucus, reaching the infection site where GSNO-PGA released NO in response to glutathione within biofilm. PLL worked synergistically with colistin (fractional inhibitory concentration index: 0.281), reducing the minimum inhibitory concentration (MIC) of colistin from 2 to 0.5 μg/mL. Benefiting from this synergistic antibacterial action and NO-mediated biofilm disruption, NO-PE/PLL NPs achieved a 99.99 % eradication rate against MDR-P. aeruginosa biofilms. Additionally, NO-PE/PLL NPs efficiently inhibited endotoxins-stimulated inflammation response. In a chronic pulmonary infection model, NO-PE/PLL NPs displayed the highest eradication efficiency (99.78 %) to infected mice, while having no adverse effects on their major organs or pulmonary functions. These results highlight NO-PE/PLL NPs as a promising therapeutic strategy for treating recalcitrant infections caused by MDR-P. aeruginosa biofilms.
Collapse