1
|
Recio-Aldavero J, Muñoz-Moreno L, Román ID, Bajo AM. Fundamentals of Zymography: Applications to the Study of Biological Samples. Methods Mol Biol 2025; 2918:37-46. [PMID: 40261612 DOI: 10.1007/978-1-0716-4482-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Zymography is a very useful technique to determine the gelatinolytic activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). This work describes the preparation and use of different biological samples (culture media, cell lysates, tissue extracts, and extracellular vesicles), as well as the determination of gelatinolytic activity in these samples. Proteins are separated on sodium dodecyl sulfate (SDS) polyacrylamide gels in the presence of gelatin. Once the total proteins have been resolved, specific activation of MMP-2 and MMP-9 found in the gel and staining-destination are performed to visualize this enzymatic activity. With a fast and simple method, it is possible to determine the catalytic activity of gelatinases 2 and 9 from different types of biological samples.
Collapse
Affiliation(s)
- Jorge Recio-Aldavero
- Research group: Cancers of Epithelial Origin. Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Campus Científico-Tecnológico, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
| | - Laura Muñoz-Moreno
- Research group: Cancers of Epithelial Origin. Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Campus Científico-Tecnológico, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
| | - I Dolores Román
- Research group: Cancers of Epithelial Origin. Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Campus Científico-Tecnológico, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
| | - Ana M Bajo
- Research group: Cancers of Epithelial Origin. Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Campus Científico-Tecnológico, Universidad de Alcalá, Alcalá de Henares, 28805, Spain.
| |
Collapse
|
2
|
Tang L, Zhou X, Guo A, Han L, Pan S. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 2024; 24:158-170. [PMID: 38310188 DOI: 10.1007/s12012-023-09822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.
Collapse
Affiliation(s)
- Ling Tang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiao Zhou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Silin Pan
- Heart Center, Qingdao Women and Children's Hospital, Shandong University, No.217 West Liaoyang Road, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Ma Y, Lin Z, Chen X, Zhao X, Sun Y, Wang J, Mou X, Zou H, Chen J. Human hair follicle-derived mesenchymal stem cells promote tendon repair in a rabbit Achilles tendinopathy model. Chin Med J (Engl) 2023; 136:1089-1097. [PMID: 37052142 PMCID: PMC10228488 DOI: 10.1097/cm9.0000000000002542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Hair follicles are easily accessible and contain stem cells with different developmental origins, including mesenchymal stem cells (MSCs), that consequently reveal the potential of human hair follicle (hHF)-derived MSCs in repair and regeneration. However, the role of hHF-MSCs in Achilles tendinopathy (AT) remains unclear. The present study investigated the effects of hHF-MSCs on Achilles tendon repair in rabbits. METHODS First, we extracted and characterized hHF-MSCs. Then, a rabbit tendinopathy model was constructed to analyze the ability of hHF-MSCs to promote repair in vivo . Anatomical observation and pathological and biomechanical analyses were performed to determine the effect of hHF-MSCs on AT, and quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining were performed to explore the molecular mechanisms through which hHF-MSCs affects AT. Furthermore, statistical analyses were performed using independent sample t test, one-way analysis of variance (ANOVA), and one-way repeated measures multivariate ANOVA as appropriate. RESULTS Flow cytometry, a trilineage-induced differentiation test, confirmed that hHF-derived stem cells were derived from MSCs. The effect of hHF-MSCs on AT revealed that the Achilles tendon was anatomically healthy, as well as the maximum load carried by the Achilles tendon and hydroxyproline proteomic levels were increased. Moreover, collagen I and III were upregulated in rabbit AT treated with hHF-MSCs (compared with AT group; P < 0.05). Analysis of the molecular mechanisms revealed that hHF-MSCs promoted collagen fiber regeneration, possibly through Tenascin-C (TNC) upregulation and matrix metalloproteinase (MMP)-9 downregulation. CONCLUSIONS hHF-MSCs can be a treatment modality to promote AT repair in rabbits by upregulating collagen I and III. Further analysis revealed that treatment of AT using hHF-MSCs promoted the regeneration of collagen fiber, possibly because of upregulation of TNC and downregulation of MMP-9, thus suggesting that hHF-MSCs are more promising for AT.
Collapse
Affiliation(s)
- Yingyu Ma
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhiwei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd, Hangzhou, Zhejiang 310052, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xin Zhao
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yi Sun
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ji Wang
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hai Zou
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinyang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
4
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
5
|
Nanomodulation and nanotherapeutics of tumor-microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
El-Sherbeni AA, Bhatti R, Isse FA, El-Kadi AOS. Identifying simultaneous matrix metalloproteinases/soluble epoxide hydrolase inhibitors. Mol Cell Biochem 2022; 477:877-884. [PMID: 35067781 DOI: 10.1007/s11010-021-04337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase (MMP) and soluble epoxide hydrolase (sEH) have completely unrelated biological functions; however, their dysregulation produce similar effects on biological systems. Based on the similarity in the reported structural requirements for their inhibition, the current study aimed to identify a simultaneous inhibitor for MMP and sEH. Six compounds were identified as potential simultaneous MMP/sEH inhibitors and tested for their capacity to inhibit MMP and sEH. Inhibition of MMP and sEH activity using their endogenous and exogenous substrates was measured by liquid chromatography/mass spectrometry, spectrophotometry, and zymography. Two compounds, CTK8G1143 and ONO-4817, were identified to inhibit both MMP and sEH activity. CTK8G1143 and ONO-4817 inhibited the recombinant human sEH activity by an average of 67.4% and 55.2%, respectively. The IC50 values for CTK8G1143 and ONO-4817 to inhibit recombinant human sEH were 5.2 and 3.5 µM, respectively, whereas their maximal inhibition values were 71.4% and 42.8%, respectively. Also, MMP and sEH activity of human cardiomyocytes were simultaneously inhibited by CTK8G1143 and ONO-4817. Regarding other compounds, they showed either MMP or sEH inhibitory activity but not both. In conclusion, these two simultaneous inhibitors of MMP and sEH could provide a promising intervention for the prevention and control of several diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabia Bhatti
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis. Oncogene 2022; 41:560-570. [PMID: 34785776 DOI: 10.1038/s41388-021-02109-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022]
Abstract
Melanoma is a type of skin cancer that develops in pigment-producing melanocytes and often spreads to other parts of the body. Aberrant gene expression has been considered as a crucial step for increasing the risk of melanomagenesis, but how chromatin reorganization contributes to this pathogenic process is still not well understood. Here we report that matrix metalloproteinase 9 (MMP-9) localizes to the nucleus of melanoma cells and potentiates gene expression by proteolytically clipping the histone H3 N-terminal tail (H3NT). From genome-wide studies, we discovered that growth-regulatory genes are selectively targeted and activated by MMP-9-dependent H3NT proteolysis in melanoma cells. MMP-9 cooperates functionally with p300/CBP because MMP-9 cleaves H3NT in a manner that is dependent on p300/CBP-mediated acetylation of H3K18. The functional significance of MMP-9-dependent H3NT proteolysis is further underscored by the fact that RNAi knockdown and small-molecule inhibition of MMP-9 and p300/CBP impede melanomagenic gene expression and melanoma tumor growth. Together, our data establish new functions and mechanisms for nuclear MMP-9 in promoting melanomagenesis and demonstrate how MMP-9-dependent H3NT proteolysis can be exploited to prevent and treat melanoma skin cancer.
Collapse
|
8
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
9
|
Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3034727. [PMID: 32964026 PMCID: PMC7501571 DOI: 10.1155/2020/3034727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) are increasingly being advocated for regenerative medicine-based therapies. However, significant heterogeneity in the genotypic/phenotypic properties of DPSC subpopulations exist, influencing their therapeutic potentials. As most studies have established DPSC heterogeneity using 2D culture approaches, we investigated whether heterogeneous DPSC proliferative and contraction/remodelling capabilities were further evident within 3D type I collagen gels in vitro. DPSC subpopulations were isolated from human third molars and identified as high/low proliferative and multipotent/unipotent, following in vitro culture expansion and population doubling (PD) analysis. High proliferative/multipotent DPSCs, such as A3 (30 PDs and 80 PDs), and low proliferative/unipotent DPSCs, such as A1 (17 PDs), were cultured in collagen gels for 12 days, either attached or detached from the surrounding culture plastic. Collagen architecture and high proliferative/multipotent DPSC morphologies were visualised by Scanning Electron Microscopy and FITC-phalloidin/Fluorescence Microscopy. DPSC proliferation (cell counts), contraction (% diameter reductions), and remodelling (MMP-2/MMP-9 gelatin zymography) of collagen gels were also evaluated. Unexpectedly, no proliferation differences existed between DPSCs, A3 (30 PDs) and A1 (17 PDs), although A3 (80 PDs) responses were significantly reduced. Despite rapid detached collagen gel contraction with A3 (30 PDs), similar contraction rates were determined with A1 (17 PDs), although A3 (80 PDs) contraction was significantly impaired. Gel contraction correlated to distinct gelatinase profiles. A3 (30 PDs) possessed superior MMP-9 and comparable MMP-2 activities to A1 (17 PDs), whereas A3 (80 PDs) had significantly reduced MMP-2/MMP-9. High proliferative/multipotent DPSCs, A3 (30 PDs), further exhibited fibroblast-like morphologies becoming polygonal within attached gels, whilst losing cytoskeletal organization and fibroblastic morphologies in detached gels. This study demonstrates that heterogeneity exists in the gel contraction and MMP expression/activity capabilities of DPSCs, potentially reflecting differences in their abilities to degrade biomaterial scaffolds and regulate cellular functions in 3D environments and their regenerative properties overall. Thus, such findings enhance our understanding of the molecular and phenotypic characteristics associated with high proliferative/multipotent DPSCs.
Collapse
|
10
|
Kim Y, Kim J, Lee H, Shin WR, Lee S, Lee J, Park JI, Jhun BH, Kim YH, Yi SJ, Kim K. Tetracycline Analogs Inhibit Osteoclast Differentiation by Suppressing MMP-9-Mediated Histone H3 Cleavage. Int J Mol Sci 2019; 20:ijms20164038. [PMID: 31430857 PMCID: PMC6719029 DOI: 10.3390/ijms20164038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a common disorder of bone remodeling, caused by the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Recently, we reported that matrix metalloproteinase-9 (MMP-9)-dependent histone H3 proteolysis is a key event for proficient osteoclast formation. Although it has been reported that several MMP-9 inhibitors, such as tetracycline and its derivatives, show an inhibitory effect on osteoclastogenesis, the molecular mechanisms for this are not fully understood. Here we show that tetracycline analogs, especially tigecycline and minocycline, inhibit osteoclast formation by blocking MMP-9-mediated histone H3 tail cleavage. Our molecular docking approach found that tigecycline and minocycline are the most potent inhibitors of MMP-9. We also observed that both inhibitors significantly inhibited H3 tail cleavage by MMP-9 in vitro. These compounds inhibited receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast formation by blocking the NFATc1 signaling pathway. Furthermore, MMP-9-mediated H3 tail cleavage during osteoclast differentiation was selectively blocked by these compounds. Treatment with both tigecycline and minocycline rescued the osteoporotic phenotype induced by prednisolone in a zebrafish osteoporosis model. Our findings demonstrate that the tetracycline analogs suppress osteoclastogenesis via MMP-9-mediated H3 tail cleavage, and suggest that MMP-9 inhibition could offer a new strategy for the treatment of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Yeojin Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Jinman Kim
- Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea
| | - Hyerim Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Woo-Ri Shin
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Sheunghun Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Jisu Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju 500-757, Korea
| | - Byung Hak Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea.
| |
Collapse
|
11
|
Ouabain Accelerates Collective Cell Migration Through a cSrc and ERK1/2 Sensitive Metalloproteinase Activity. J Membr Biol 2019; 252:549-559. [PMID: 31041466 DOI: 10.1007/s00232-019-00066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Studies made in the Madin-Darby canine kidney (MDCK) epithelial cell line showed that ouabain regulates cell adhesion and cell-adhesion-related biological processes, such as migration. Here, we demonstrated that 10 nM ouabain accelerates collective cell migration and heals wounds in cultured MDCK cell monolayers. Ouabain-induced acceleration of cell migration depends on activation of the cSrc-ERK1/2 signaling cascade, as it was inhibited by the kinase inhibitors PP2 and PD98059. Activation of the cSrc-ERK1/2 signaling cascade increased expression and activation of the extracellular matrix metalloproteinase-2 (MMP-2). Inhibition of MMP activity using the generic inhibitor GM6001 or the potent iMMP-2 inhibitor prevented the accelerative effect of ouabain. Likewise, Focal Adhesion Kinase (FAK) inhibition with the transfection of dominant negative peptide FRNK impaired the effect of ouabain. These results suggest that ouabain binding to the Na+,K+-ATPase accelerates collective migration of MDCK cells through activation of the cSrc-ERK1/2-FAK signaling cascade and promoting secretion and MMP activity.
Collapse
|
12
|
MMP-1 Over-expression Promotes Malignancy and Stem-Like Properties of Human Osteosarcoma MG-63 Cells In Vitro. Curr Med Sci 2018; 38:809-817. [PMID: 30594980 DOI: 10.1007/s11596-018-1947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood, and it maintains a high level of recurrence. Matrix metalloproteinase-1 (MMP-1) was found to contribute to cancer progression. The present study was to investigate the in vitro effects of MMP-1 over-expression on the proliferation, invasion, metastasis and stem-like properties of osteosarcoma MG-63 cells. The MG-63 cells were cultured and had a full length MMP-1 cDNA inserted by the lentiviral vector (MG-63MMP-1+). MG-63 negative control and MG-63 blank control groups were established as well. MMP-1 expression was detected in MG-63MMP-1+, MG-63 negative control and MG-63 blank control cells using qPCR, Western blotting and immunofluorescence after 24 h of culture. The cell proliferation assay was performed with a camera attached to a bioreactor, which was programmed to photograph five regions of each well every 10 min over a period of 48 h. The cell invasion assay was conducted with Matrigel to assess the invasive potential of MG-63 cells over 24 h, the qPCR analysis to measure stem cell markers, including Oct4, Sox-2, Nanog, and Pax-7, and Western blot analysis to detect invasive and metastatic potential markers TIMP-1, VEGF and BMP2/4, after 24 h of culture. Immunofluorescence was used to investigate the presence of the stem cell marker Pax-7 after 24-h culture. The results showed that over-expression of MMP-1 after transfection could significantly increase tumor cell proliferation and invasion (P<0.05, MG-63MMP-1+versus controls). Pax-7 was highly expressed in MG-63MMP-1+ cells, with no significant changes of Oct-4, Sox-2, and Nanog observed (P<0.05). MG-63MMP-1+ cells showed higher expression of VEGF and BMP 2/4 proteins and lower expression of TIMP-1 protein than controls (P<0.05). It was concluded that MMP-1 over-expression in MG-63 cells contributed to the proliferation, invasion, metastasis and stem-like properties of osteosarcoma cells. Future studies should focus on in vivo effects of MMP-1 over-expression and the application of MMP-1 and Pax-7 inhibition in vivo to osteosarcoma therapies.
Collapse
|
13
|
Kim K, Shin Y, Kim J, Ulmer TS, An W. H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis. Epigenetics Chromatin 2018; 11:23. [PMID: 29807539 PMCID: PMC5971420 DOI: 10.1186/s13072-018-0193-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background MMP-9 plays a direct role in the activation of pro-osteoclastogenic genes by cleaving histone H3N-terminal tail (H3NT) and altering chromatin architecture. Although H3 acetylation at K18 has been shown to stimulate MMP-9 enzymatic activity toward H3NT, nothing is known about the influence of other H3NT modifications on this epigenetic reaction. Results We show that H3 monomethylation at lysine 27 (H3K27me1) is essential for MMP-9-dependent H3NT proteolysis during RANKL-induced osteoclast differentiation. Through the recognition of H3K27me1 mark, MMP-9 localizes and generates H3NT proteolysis at the genes encoding osteoclast differentiation factors. By using RNAi and small molecule inhibitor approaches, we also confirmed that G9a is the major methyltransferase to catalyze H3K27me1 for MMP-9-dependent H3NT proteolysis and trigger the expression of osteoclast-specific genes. Conclusions Our data establish new functions for G9a-mediated H3K27me1 in MMP-9-dependent H3NT proteolysis and demonstrate how histone modification can be exploited to regulate osteoclastogenic gene expression at the molecular level. Further studies are warranted to investigate the detailed mechanism by which G9a overexpression with concomitant dysregulation of osteoclastogenesis contributes to the pathogenesis of bone disorders. Electronic supplementary material The online version of this article (10.1186/s13072-018-0193-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyunghwan Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
14
|
An integrated structure- and pharmacophore-based MMP-12 virtual screening. Mol Divers 2018; 22:383-395. [DOI: 10.1007/s11030-017-9804-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
|
15
|
Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, Wei Y, Baer TM, Chen B. Cell sex affects extracellular matrix protein expression and proliferation of smooth muscle progenitor cells derived from human pluripotent stem cells. Stem Cell Res Ther 2017; 8:156. [PMID: 28676082 PMCID: PMC5496346 DOI: 10.1186/s13287-017-0606-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Smooth muscle progenitor cells (pSMCs) differentiated from human pluripotent stem cells (hPSCs) hold great promise for treating diseases or degenerative conditions involving smooth muscle pathologies. However, the therapeutic potential of pSMCs derived from men and women may be very different. Cell sex can exert a profound impact on the differentiation process of stem cells into somatic cells. In spite of advances in translation of stem cell technologies, the role of cell sex and the effect of sex hormones on the differentiation towards mesenchymal lineage pSMCs remain largely unexplored. Methods Using a standard differentiation protocol, two human embryonic stem cell lines (one male line and one female line) and three induced pluripotent stem cell lines (one male line and two female lines) were differentiated into pSMCs. We examined differences in the differentiation of male and female hPSCs into pSMCs, and investigated the effect of 17β-estradiol (E2) on the extracellular matrix (ECM) metabolisms and cell proliferation rates of the pSMCs. Statistical analyses were performed by using Student’s t test or two-way ANOVA, p < 0.05. Results Male and female hPSCs had similar differentiation efficiencies and generated morphologically comparable pSMCs under a standard differentiation protocol, but the derived pSMCs showed sex differences in expression of ECM proteins, such as MMP-2 and TIMP-1, and cell proliferation rates. E2 treatment induced the expression of myogenic gene markers and suppressed ECM degradation activities through reduction of MMP activity and increased expression of TIMP-1 in female pSMCs, but not in male pSMCs. Conclusions hPSC-derived pSMCs from different sexes show differential expression of ECM proteins and proliferation rates. Estrogen appears to promote maturation and ECM protein expression in female pSMCs, but not in male pSMCs. These data suggest that intrinsic cell-sex differences may influence progenitor cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0606-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.,Department of Obstetrics/Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.
| | - Morgaine Green
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Elise K Cabral
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Prachi Wani
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Fan Zhang
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Thomas M Baer
- Stanford Photonics Research Center, Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Bertha Chen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Zhao L, Li C, Liu F, Zhao Y, Liu J, Hua Y, Liu J, Huang J, Ge C. A blockade of PD-L1 produced antitumor and antimetastatic effects in an orthotopic mouse pancreatic cancer model via the PI3K/Akt/mTOR signaling pathway. Onco Targets Ther 2017; 10:2115-2126. [PMID: 28442920 PMCID: PMC5396961 DOI: 10.2147/ott.s130481] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive and intractable malignant tumors, and most deaths from pancreatic cancer are related to metastases. It has been demonstrated in vitro that overexpression of programmed death-ligand 1 (PD-L1) correlates with a lack of phosphatase and tensin homologue (PTEN) expression in pancreatic cancer tissue. This loss of PTEN expression may aberrantly activate the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, and thereby promote tumor cell survival, proliferation, and disease progression. In this study, we investigated the potential therapeutic effect of blockading PD-L1 expression on the progression of pancreatic cancer and its spontaneous liver metastases in vivo by inhibiting the PI3K/Akt/mTOR signaling pathway. METHODS We investigated the effect of blockading PD-L1 in an orthotopic pancreatic cancer mouse model. The pancreatic tumor weights and inhibition ratios were determined after treatment with antimouse PD-L1 antibody for 5 weeks. We used immunohistochemistry methods to investigate PD-L1 expression in pancreatic cancer tissue and spontaneous liver metastasis tissue. The levels of mRNA and protein expression for various components involved in the PI3K/Akt/mTOR signaling pathway as well as for matrix metalloproteinases-2 and -9 (MMP2 and MMP9) were measured by reverse transcription polymerase chain reaction (RT-PCR) and Western blot methods, respectively. RESULTS Blockading PD-L1 significantly inhibited tumor growth and decreased the levels of PD-L1 expression in tumor tissue. Furthermore, the levels of PTEN mRNA and protein expression were elevated, while the levels of phospho-Akt (p-Akt) and phospho-mTOR (p-mTOR) protein were decreased in pancreatic cancer and liver metastasis tissues after establishing a PD-L1 blockade. In addition, a PD-L1 blockade decreased the levels of MMP2 and MMP9 mRNA and protein expression in tumor tissues. CONCLUSION Our results suggest that a blockade of PD-L1 may inhibit the growth and metastasis of pancreatic cancer by modulating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University
| | - Cheng Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yonghong Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jun Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ye Hua
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University
| | - Jinyang Liu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University
| | - Jiapeng Huang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University
| | - Chunlin Ge
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University
| |
Collapse
|
17
|
Vuong TT, Rønning SB, Kolset SO, Pedersen ME. The enzyme profiles in the connective tissue attaching pin bones to the surrounding tissue is specific in farmed salmon (Salmo salar) and cod (Gadus morhua L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:19-25. [PMID: 27394140 PMCID: PMC5306258 DOI: 10.1007/s10695-016-0264-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Post mortem storage is a necessary process for removal of pin bones without destruction of fillets, thereby avoiding volume and economic loss. However, the enzymes involved in loosening pin bones during storage have not been studied to a great extent. In this study, the activities and localization of MMPs in the connective tissue (CT) of pin bones dissected from fillet of salmon and cod were investigated. Interestingly, the enzyme activity profile in these two species was different during post mortem storage of fish fillets. Adding MMP inhibitor (GM6001) and serine protease inhibitor (Pefabloc) revealed different effects in the two species, suggesting different regulations in salmon and cod. In situ zymography with the same inhibitors verified MMP and serine protease activity in CT close to pin bone at early post mortem (6 h) in salmon. However, MMP inhibition was not evident in cod in this area at that time point. Immunohistochemistry further revealed MMP9 and MMP13 were located more to the outer rim of CT, facing the pin bone and adipose tissue, while MMP7 was more randomly distributed within CT in salmon. In contrast, all these three MMPs were randomly distributed in CT in cod. In summary, our study reveals different MMP enzyme profiles in salmon and cod in the pin bone area, influenced by serine proteases, and suggests that MMPs and serine proteases must be taken in consideration when studying the conditions for early pin bone removal.
Collapse
Affiliation(s)
- Tram T Vuong
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Postboks 210, 1431, Ås, Norway.
| | - Sissel B Rønning
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Postboks 210, 1431, Ås, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mona E Pedersen
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Postboks 210, 1431, Ås, Norway
| |
Collapse
|
18
|
Nguyen PD, Cong VT, Baek C, Min J. Self-assembly of an upconverting nanocomplex and its application to turn-on detection of metalloproteinase-9 in living cells. NANOTECHNOLOGY 2016; 27:405101. [PMID: 27578541 DOI: 10.1088/0957-4484/27/40/405101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Upcoversion nanoparticles are an emerging luminescent nanomaterial with excellent photophysical properties that have great benefits in biological sensing. In this study, a luminescent turn-on biosensor for cell-secreted protease activity assay is established based on resonance energy transfer in an upconversion nanoparticle-graphene oxide nano-assembly. The proposed biosensor consists of a blue-emitting upconversion nanoparticle covered with a quenching complex, comprising gelatin as the proteinase substrate and graphene oxide nanosheets as luminescence acceptors. After enzymatic digestion, the upconversion nanoparticles lose the gelatin cover due to the disassembly of the quenching complex, thus the upconverting luminescence in the blue region is restored (a turn-on response). The recovered upconverting luminescence is proportional to the protease concentration; the limit of detection was 12 ng ml(-1). Finally, the upconversion-graphene oxide nanocomplex was successfully applied in the detection of cell-secreted protease-metalloproteinase in MCF-7 cancer cells with high sensitivity and specificity.
Collapse
Affiliation(s)
- Phuong-Diem Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
19
|
Wang L, Sun QQ, Zhang SJ, Du YW, Wang YY, Zang WQ, Chen XN, Zhao GQ. Inhibitory effect of α-solanine on esophageal carcinoma in vitro. Exp Ther Med 2016; 12:1525-1530. [PMID: 27588073 DOI: 10.3892/etm.2016.3500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in potatoes, has been observed to inhibit growth and induce apoptosis in cancer cells. However, the antitumor efficacy of α-solanine on esophageal carcinoma has yet to be fully elucidated. In the present study, the antitumor efficacy of α-solanine against human esophageal carcinoma cells was investigated. It was determined that α-solanine inhibited the growth and proliferation of human esophageal EC9706 and Eca109 cancer cells in a dose-dependent manner, as well as the cell migration and invasion. In addition, the apoptotic rate was increased in the cancer cells treated with α-solanine in a dose-dependent manner, compared with that of the control group (P<0.05). The expression levels of tumor metastasis-related proteins, including matrix metalloproteinase (MMP)-2 and MMP-9, were reduced in the cells treated with α-solanine, as compared with the control group. Conversely, significantly higher expression levels of E-cadherin were detected in the α-solanine-treated groups, as compared with the control group (P<0.05). Therefore, the current results provide a novel insight into the anti-tumor mechanism of α-solanine, and suggest that α-solanine is a potential agent for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian-Qian Sun
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shi-Jie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yu-Wen Du
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan-Yuan Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wen-Qiao Zang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Nan Chen
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guo-Qiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
20
|
Shamsara J. Considering Rotatability of Hydroxyl Groups for the Active Site Residues of MMP-13 in Retrospective Virtual Screening Campaigns. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2016; 10:1-6. [PMID: 27006708 PMCID: PMC4780470 DOI: 10.2174/1874104501610010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/26/2015] [Accepted: 07/15/2015] [Indexed: 01/15/2023]
Abstract
Considering different orientation of hydroxyl and thiol groups of receptor
residues such as Thr, Tyr, Ser and Cys is an option available on Glide docking
software. This is an attempt that can provide more realistic ligand-receptor
interactions. Matrix metalloproteinase 13 (MMP-13) is a suggested target for
several diseases including osteoarthritis and cancer. MMP-13 was selected as a
receptor with reported flexibility in the active site residues. Four residues in
the MMP-13 active site were selected and their hydroxyl groups were made
flexible during docking: Tyr241, Thr242, Tyr243
and Thr244. The ability of retrospective virtual screenings using a
rigid receptor for discriminating between actives and decoys were compared to
those using receptor with different combination of flexible residues.
Statistical analysis of the results and inspecting the binding pose of the
ligands suggested that the hydroxyl orientation of Tyr241, Thr242,
Tyr243 and Thr244 (in particular Thr242 and to
a lesser extent Thr244) had impacts on the MMP-13 docking results.
Collapse
Affiliation(s)
- Jamal Shamsara
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Epithelial-mesenchymal transition in keratocystic odontogenic tumor: possible role in locally aggressive behavior. BIOMED RESEARCH INTERNATIONAL 2015; 2015:168089. [PMID: 25879017 PMCID: PMC4386571 DOI: 10.1155/2015/168089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
The aim of this study is to clarify whether epithelial-mesenchymal transition (EMT) is involved in the pathogenesis and development of keratocystic odontogenic tumor (KCOT). The expression levels of EMT-related proteins and genes in normal oral mucosa (OM), radicular cyst (RC), and KCOT were determined and compared by real-time quantitative PCR and immunohistochemistry. Our data showed that the expression of epithelial markers E-cadherin and Pan-cytokeratin was significantly downregulated in KCOT with upregulation of mesenchymal markers N-cadherin compared to OM and RC. Importantly, TGF-β, a potent EMT inducer, and Slug, a master transcription factor, were also found highly expressed in KCOT. In addition, the results from Spearman rank correlation test and clustering analysis revealed the close relationship between Slug and MMP-9, which was further evidenced by double-labeling immunofluorescence that revealed a synchronous distribution for Slug with MMP-9 in KCOT samples. All the data suggested EMT might be involved in the locally aggressive behavior of KCOT.
Collapse
|
22
|
Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-κB activation. Mol Cell Biochem 2015; 403:85-94. [PMID: 25670016 PMCID: PMC4383818 DOI: 10.1007/s11010-015-2339-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a central role in the invasion and metastasis of various types of cancer cells. Here, we demonstrate that glaucine, an alkaloid isolated from the plant Corydalis turtschaninovii tuber (Papaveraceae), can inhibit the migration and invasion of human breast cancer cells. We further show that glaucine significantly blocks phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression and activity in a dose-dependent manner. Results from reporter gene and electrophoretic mobility shift assays revealed that glaucine inhibits MMP-9 expression by suppressing activation of the nuclear transcription factor nuclear factor-κB (NF-κB). Moreover, glaucine attenuates PMA-induced IκBα degradation and nuclear translocation of NF-κB. Finally, we also found that glaucine inhibits invasion and MMP-9 expression in the highly metastatic MDA-MB-231 breast cancer cell line. Taken together, our findings indicate that the MMP-9 inhibitory activity of glaucine and its abilities to attenuate IκBα and NF-κB activities may be therapeutically useful as a novel means of controlling breast cancer growth and invasiveness.
Collapse
|
23
|
Evaluation of 11 scoring functions performance on matrix metalloproteinases. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:162150. [PMID: 25610645 PMCID: PMC4291136 DOI: 10.1155/2014/162150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022]
Abstract
Matrix metalloproteinases (MMPs) have distinctive roles in various physiological and pathological processes such as inflammatory diseases and cancer. This study explored the performance of eleven scoring functions (D-Score, G-Score, ChemScore, F-Score, PMF-Score, PoseScore, RankScore, DSX, and X-Score and scoring functions of AutoDock4.1 and AutoDockVina). Their performance was judged by calculation of their correlations to experimental binding affinities of 3D ligand-enzyme complexes of MMP family. Furthermore, they were evaluated for their ability in reranking virtual screening study results performed on a member of MMP family (MMP-12). Enrichment factor at different levels and receiver operating characteristics (ROC) curves were used to assess their performance. Finally, we have developed a PCA model from the best functions. Of the scoring functions evaluated, F-Score, DSX, and ChemScore were the best overall performers in prediction of MMPs-inhibitors binding affinities while ChemScore, Autodock, and DSX had the best discriminative power in virtual screening against the MMP-12 target. Consensus scorings did not show statistically significant superiority over the other scorings methods in correlation study while PCA model which consists of ChemScore, Autodock, and DSX improved overall enrichment. Outcome of this study could be useful for the setting up of a suitable scoring protocol, resulting in enrichment of MMPs inhibitors.
Collapse
|
24
|
A Predictive HQSAR Model for a Series of Tricycle Core Containing MMP-12 Inhibitors with Dibenzofuran Ring. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:630807. [PMID: 25574392 PMCID: PMC4273529 DOI: 10.1155/2014/630807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/26/2014] [Accepted: 11/05/2014] [Indexed: 01/29/2023]
Abstract
MMP-12 is a member of matrix metalloproteinases (MMPs) family involved in pathogenesis of some inflammatory based diseases. Design of selective matrix MMPs inhibitors is still challenging because of binding pocket similarities among MMPs family. We tried to generate a HQSAR (hologram quantitative structure activity relationship) model for a series of MMP-12 inhibitors. Compounds in the series of inhibitors with reported biological activity against MMP-12 were used to construct a predictive HQSAR model for their inhibitory activity against MMP-12. The HQSAR model had statistically excellent properties and possessed good predictive ability for test set compounds. The HQSAR model was obtained for the 26 training set compounds showing cross-validated q2 value of 0.697 and conventional r2 value of 0.986. The model was then externally validated using a test set of 9 compounds and the predicted values were in good agreement with the experimental results (rpred2 = 0.8733). Then, the external validity of the model was confirmed by Golbraikh-Tropsha and rm2 metrics. The color code analysis based on the obtained HQSAR model provided useful insights into the structural features of the training set for their bioactivity against MMP-12 and was useful for the design of some new not yet synthesized MMP-12 inhibitors.
Collapse
|
25
|
Veland IR, Lindbæk L, Christensen ST. Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development. Bioscience 2014; 64:1115-1125. [PMID: 26955067 PMCID: PMC4776690 DOI: 10.1093/biosci/biu179] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration.
Collapse
Affiliation(s)
- Iben Rønn Veland
- Iben Rønn Veland ( ) is a postdoctoral researcher from the Christensen Lab, at the University of Copenhagen, Denmark, and she studies the role of primary cilia in cell polarization and migration. Louise Lindbæk ( ) is a PhD student in the Christensen Lab, and she studies the function of primary cilia in neurogenesis and brain development. Søren Tvorup Christensen ( ) is a professor at the University of Copenhagen. He studies how primary cilia coordinate signaling pathways during development and in tissue homeostasis
| | - Louise Lindbæk
- Iben Rønn Veland ( ) is a postdoctoral researcher from the Christensen Lab, at the University of Copenhagen, Denmark, and she studies the role of primary cilia in cell polarization and migration. Louise Lindbæk ( ) is a PhD student in the Christensen Lab, and she studies the function of primary cilia in neurogenesis and brain development. Søren Tvorup Christensen ( ) is a professor at the University of Copenhagen. He studies how primary cilia coordinate signaling pathways during development and in tissue homeostasis
| | - Søren Tvorup Christensen
- Iben Rønn Veland ( ) is a postdoctoral researcher from the Christensen Lab, at the University of Copenhagen, Denmark, and she studies the role of primary cilia in cell polarization and migration. Louise Lindbæk ( ) is a PhD student in the Christensen Lab, and she studies the function of primary cilia in neurogenesis and brain development. Søren Tvorup Christensen ( ) is a professor at the University of Copenhagen. He studies how primary cilia coordinate signaling pathways during development and in tissue homeostasis
| |
Collapse
|
26
|
Gomez I, Benyahia C, Louedec L, Leséche G, Jacob MP, Longrois D, Norel X. Decreased PGE₂ content reduces MMP-1 activity and consequently increases collagen density in human varicose vein. PLoS One 2014; 9:e88021. [PMID: 24505358 PMCID: PMC3914898 DOI: 10.1371/journal.pone.0088021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Varicose veins are elongated and dilated saphenous veins. Despite the high prevalence of this disease, its pathogenesis remains unclear. AIMS In this study, we investigated the control of matrix metalloproteinases (MMPs) expression by prostaglandin (PG)E₂ during the vascular wall remodeling of human varicose veins. METHODS AND RESULTS Varicose (small (SDv) and large diameter (LDv)) and healthy saphenous veins (SV) were obtained after surgery. Microsomal and cytosolic PGE-synthases (mPGES and cPGES) protein and mRNA responsible for PGE₂ metabolism were analyzed in all veins. cPGES protein was absent while its mRNA was weakly expressed. mPGES-2 expression was similar in the different saphenous veins. mPGES-1 mRNA and protein were detected in healthy veins and a significant decrease was found in LDv. Additionally, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), responsible for PGE₂ degradation, was over-expressed in varicose veins. These variations in mPGES-1 and 15-PGDH density account for the decreased PGE₂ level observed in varicose veins. Furthermore, a significant decrease in PGE₂ receptor (EP4) levels was also found in SDv and LDv. Active MMP-1 and total MMP-2 concentrations were significantly decreased in varicose veins while the tissue inhibitors of metalloproteinases (TIMP -1 and -2), were significantly increased, probably explaining the increased collagen content found in LDv. Finally, the MMP/TIMP ratio is restored by exogenous PGE₂ in varicose veins and reduced in presence of an EP4 receptor antagonist in healthy veins. CONCLUSIONS In conclusion, PGE₂ could be responsible for the vascular wall thickening in human varicose veins. This mechanism could be protective, strengthening the vascular wall in order to counteract venous stasis.
Collapse
Affiliation(s)
- Ingrid Gomez
- INSERM, U698, Paris, France
- University Paris Nord, UMR-S698, Paris, France
| | - Chabha Benyahia
- INSERM, U698, Paris, France
- University Paris Nord, UMR-S698, Paris, France
| | | | - Guy Leséche
- INSERM, U698, Paris, France
- AP-HP CHU X. Bichat, Department of Vascular and Thoracic Surgery, University Paris Diderot, Sorbonne Paris-Cité, UMR-S698, Paris, France
| | | | - Dan Longrois
- INSERM, U698, Paris, France
- AP-HP CHU X. Bichat, Department of Anesthesia and Intensive Care, University Paris Diderot, Sorbonne Paris-Cité, UMR-S698, Paris, France
| | - Xavier Norel
- INSERM, U698, Paris, France
- University Paris Nord, UMR-S698, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Hummitzsch L, Zitta K, Bein B, Steinfath M, Albrecht M. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. Exp Cell Res 2014; 322:62-70. [PMID: 24394542 DOI: 10.1016/j.yexcr.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022]
Abstract
Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
28
|
Pan F, Ma S, Cao W, Liu H, Chen F, Chen X, Shi R. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol Biol Rep 2013; 40:4139-4146. [PMID: 23712777 DOI: 10.1007/s11033-012-2225-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is highly invasive and is currently the fourth leading cause of cancer death worldwide. CXC chemokine receptor-4 (CXCR4) is a G protein-coupled receptor for CXC chemokine ligand 12/stromal cell-derived factor-1α (SDF-1α), a member of a large family of small, structurally related, heparin-binding chemokine proteins. SDF-1α/CXCR4 plays an important role in tumor growth, invasion, metastasis, and angiogenesis. SDF-1α and CXCR4 are upregulated in many tumors, including pancreatic cancer tissues, and preliminary data indicate that the SDF-1/CXCR4 axis plays an important role in tumor invasion. However, their precise role and the mechanism through which they function remain largely unknown. In this study, analysis of SDF-1α, CXCR4 and MMP-2 expression in pancreatic cancer and adjacent tissue samples from ten patients revealed that all three proteins are overexpressed in human pancreatic cancer. SDF-1α induced MMP-2 and MMP-9 upregulation in PANC-1 and SW-1990 cells, which was associated with increased pancreatic cancer cell proliferation and invasion. Furthermore, SDF-1α induced p38 phosphorylation and p38 inhibition reduced both the level of SDF-1α-stimulated MMP-2 expression and PANC-1 cell invasion. Overall, our results demonstrate that SDF-1α/CXCR4 upregulates MMP-2 expression and induces pancreatic cancer cell invasion in PANC-1 and SW-1990 cell lines by activating p38 MAPK.
Collapse
Affiliation(s)
- Feng Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|