1
|
Liu Y, Qi L, Li Z, Yong VW, Xue M. Crosstalk Between Matrix Metalloproteinases and Their Inducer EMMPRIN/CD147: a Promising Therapeutic Target for Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:557-567. [PMID: 38100014 DOI: 10.1007/s12975-023-01225-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 04/08/2025]
Abstract
Intracerebral hemorrhage (ICH) is characterized by the disruption of cerebrovascular integrity, resulting in hematoma enlargement, edema formation, and physical damage in the brain parenchyma. Primary ICH also leads to secondary brain injury contributed by oxidative stress, dysregulated immune responses, and proteolysis. In this context, matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases capable of degrading all components of the extracellular matrix. They disrupt the blood-brain barrier and promote neuroinflammation. Importantly, several MMP members are upregulated following ICH, and members may have different functions at specific periods in ICH. Hence, the modulation and function of MMPs are more complex than expected. Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that induces the production of MMPs. In this review, we systematically discuss the biology and functions of MMPs and EMMPRIN/CD147 in ICH and the complex crosstalk between them.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Lingxiao Qi
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Vasa D, Rossitto CP, Ezzat B, Bazil M, Schuldt B, Johnson B, Ali M, Mocco J, Kellner CP. Stress hyperglycemia is associated with longer ICU length of stay after endoscopic intracerebral hemorrhage evacuation. J Stroke Cerebrovasc Dis 2024; 33:107911. [PMID: 39097120 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Stress hyperglycemia has been linked to poor outcomes in intracerebral hemorrhage (ICH). Recent studies using the ratio of blood glucose to glycated hemoglobin (HbA1c) as a marker for stress hyperglycemia have demonstrated greater discriminative power in predicting poor outcomes for stroke inpatients compared to blood glucose alone. Therefore, we aimed to investigate whether the preoperative glucose-to-HbA1c ratio is a predictor of postoperative outcomes in patients who have undergone minimally invasive ICH evacuation. METHODS Retrospective chart review was performed on ICH patients treated with minimally invasive surgery (MIS) in a single health system from 2015 to 2022. Stress hyperglycemia was defined as preoperative glucose-to-HbA1c ratio > calculated-median. Postoperative outcomes including modified Rankin Score (mRS) and length of stay (LOS) were collected. Univariate analyses were conducted to determine associations. Variables with p<0.05 were included in multivariate analyses. RESULTS Of 192 patients who underwent minimally invasive ICH evacuation and had available glucose data, 96 demonstrated stress hyperglycemia (glucose-to-HbA1c ratio > 1.23). Patients with stress hyperglycemia were more likely to have a history of diabetes (43 % vs. 27 %, p=0.034), IVH (54 % vs. 33 %, p=0.007), higher preoperative hematoma volumes (46.8 ml vs. 38.6 mL, p=0.02), higher postoperative hematoma volumes (6 ml vs. 2.9 mL, p=0.008), smaller evacuation percentages (86.7 % vs. 92.7 %, p=0.048), longer procedure lengths (2.78 hrs vs. 2.23 hrs, p=0.015), and prolonged ICU LOS (9.44 days vs. 5.68 days, p=0.003). In a multivariate analysis, stress hyperglycemia remained predictive of prolonged ICU LOS (OR=2.44; p=0.026) when controlling for initial NIHSS, IVH, time to evacuation, procedure time, and diabetes. CONCLUSIONS Stress hyperglycemia was strongly associated with prolonged ICU LOS after MIS for ICH. Understanding factors associated with LOS may provide predictive value for a patient's hospital course after minimally invasive ICH evacuation and further guide clinician expectations of recovery.
Collapse
Affiliation(s)
- Devarshi Vasa
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States.
| | - Christina P Rossitto
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Bahie Ezzat
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Maximilian Bazil
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Braxton Schuldt
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Brian Johnson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Devarshi Vasa, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| |
Collapse
|
3
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN, Ul Hassan SS, Hasan MM, Bhatia S, Al-Harassi A, Khan H, Bungau S. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metab Brain Dis 2022; 37:1-16. [PMID: 34436747 DOI: 10.1007/s11011-021-00820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin's potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Syed Shams Ul Hassan
- School of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Noida, Haryana, India
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 35:862-886. [PMID: 34341912 DOI: 10.1007/s12028-021-01311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood-brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.
Collapse
|
7
|
Naito T, Shun M, Nishimura H, Gibo T, Tosaka M, Kawashima M, Ando A, Ogawa T, Sanaka T, Nitta K. Pleiotropic effect of erythropoiesis-stimulating agents on circulating endothelial progenitor cells in dialysis patients. Clin Exp Nephrol 2021; 25:1111-1120. [PMID: 34106373 DOI: 10.1007/s10157-021-02071-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recent studies have suggested that erythropoiesis-stimulating agents (ESAs) may accelerate not only angiogenesis but also vasculogenesis, beyond erythropoiesis. METHODS We conducted a 12-week prospective study in 51 dialysis patients; 13 were treated with recombinant human erythropoietin (EPO, 5290.4 ± 586.9 IU/week), 16 with darbepoetin (DA, 42.9 ± 4.3 µg/week), 12 with epoetin β pegol (CERA, 40.5 ± 4.1 µg/week) and 10 with no ESAs. Vascular mediators comprising endothelial progenitor cells (EPCs), vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), and high-sensitivity C-reactive protein (hs-CRP) were measured at 0 and 12 weeks. EPCs were measured by flow cytometry as CD45lowCD34+CD133+ cells. RESULTS The EPC count increased significantly to a greater extent in the EPO group than in the other three group, and increased significantly from 0 to 12 weeks in a EPO dose-dependent manner. In both the DA and CERA groups, the EPC count did not change at 12 weeks. Serum levels of VEGF, MMP-2 and hs-CRP were not affected by ESA treatment in all groups. In the CERA group, serum ferritin decreased significantly compared to the no-ESA group and correlated with CERA dose, although use of iron was permitted if required during the prospective study period of 12 weeks. CONCLUSIONS When patients on dialysis were treated with clinical doses of various ESAs, only EPO induced a significant increase of circulating EPCs from bone marrow, whereas, DA and CERA had no effect.
Collapse
Affiliation(s)
- Takashi Naito
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan.
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan.
- Hiyoshi Sezai Clinic, 2-5-2-4F, Hiyoshi, Kohokuku, Yokohama, Kanagawa, 223-0061, Japan.
| | - Manabe Shun
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Nishimura
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoki Gibo
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Mai Tosaka
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Moe Kawashima
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Akitoshi Ando
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
| | - Tetsuya Ogawa
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsutomu Sanaka
- Life Style Disease Center, Edogawa Hospital, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics 2020; 17:484-496. [PMID: 31975152 PMCID: PMC7283398 DOI: 10.1007/s13311-020-00839-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-30% of all strokes and affects more than one million people every year worldwide, and it is the stroke subtype associated with the highest rates of mortality and residual disability. So far, clinical trials have mainly targeted primary cerebral injury and have substantially failed to improve clinical outcomes. The understanding of the pathophysiology of early and delayed injury after ICH is, hence, of paramount importance to identify potential targets of intervention and develop effective therapeutic strategies. Matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases able to degrade any component of the extracellular matrix. They are upregulated after ICH, in which different cell types, including leukocytes, activated microglia, neurons, and endothelial cells, are involved in their synthesis and secretion. The aim of this review is to summarize the available experimental and clinical evidence about the role of MMPs in brain injury following spontaneous ICH and provide critical insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Silvia Ricci
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
9
|
Zhao Y, Wei ZZ, Zhang JY, Zhang Y, Won S, Sun J, Yu SP, Li J, Wei L. GSK-3β Inhibition Induced Neuroprotection, Regeneration, and Functional Recovery After Intracerebral Hemorrhagic Stroke. Cell Transplant 2017; 26:395-407. [PMID: 28195036 DOI: 10.3727/096368916x694364] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hemorrhagic stroke is a devastating disease that lacks effective therapies. In the present investigation, we tested 6-bromoindirubin-3'-oxime (BIO) as a selective glycogen synthase kinase-3β (GSK-3β) inhibitor in a mouse model of intracerebral hemorrhage (ICH). ICH was induced by injection of collagenase IV into the striatum of 8- to 10-week-old C57BL/6 mice. BIO (8 μg/kg, IP) was administered following either an acute delivery (0-2 h delay) or a prolonged regimen (every 48 h starting at 3 days post-ICH). At 2 days post-ICH, the acute BIO treatment significantly reduced the hematoma volume. In the perihematoma regions, BIO administration blocked GSK-3β phosphorylation/activation, increased Bcl-2 and β-catenin levels, and significantly increased viability of neurons and other cell types. The prolonged BIO regimen maintained a higher level of β-catenin, upregulated VEGF and BDNF, and promoted neurogenesis and angiogenesis in peri-injury zones at 14 days after ICH. The BIO treatment also promoted proliferation of neural stem cells (NSCs) and migration of nascent DCX+ neuroblasts from the subventricular zone (SVZ) to the lesioned cortex. BIO improved functional outcomes on both the neurological severity score and rotarod tests. The findings of this study corroborate the neuroprotective and regenerative effects of BIO and suggest that the Wnt/GSK-3β/β-catenin pathway may be explored for the treatment of acute or chronic ICH.
Collapse
|
10
|
Electroacupuncture Exerts Neuroprotection through Caveolin-1 Mediated Molecular Pathway in Intracerebral Hemorrhage of Rats. Neural Plast 2016; 2016:7308261. [PMID: 27725888 PMCID: PMC5048052 DOI: 10.1155/2016/7308261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is one of the most devastating types of stroke. Here, we aim to demonstrate that electroacupuncture on Baihui (GV20) exerts neuroprotection for acute ICH possibly via the caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway. The model of ICH was established by using collagenase VII. Rats were randomly divided into three groups: Sham-operation group, Sham electroacupuncture group, and electroacupuncture group. Each group was further divided into 4 subgroups according to the time points of 6 h, 1 d, 3 d, and 7 d after ICH. The methods were used including examination of neurological deficit scores according to Longa's scale, measurement of blood-brain barrier permeability through Evans Blue content, in situ immunofluorescent detection of caveolin-1 in brains, western blot analysis of caveolin-1 in brains, and in situ zymography for measuring matrix metalloproteinase-2/9 activity in brains. Compared with Sham electroacupuncture group, electroacupuncture group has resulted in a significant improvement in neurological deficit scores and in a reduction in Evans Blue content, expression of caveolin-1, and activity of matrix metalloproteinase-2/9 at 6 h, 1 d, 3 d, and 7 d after ICH (P < 0.05). In conclusion, the present results suggested that electroacupuncture on GV20 can improve neurological deficit scores and reduce blood-brain barrier permeability after ICH, and the mechanism possibly targets caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway.
Collapse
|
11
|
Mechanisms of Cerebral Hemorrhage. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L, Tang J, Tang J, Zhang JH. 17β-Estradiol attenuates hematoma expansion through estrogen receptor α/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 2014; 46:485-91. [PMID: 25523052 DOI: 10.1161/strokeaha.114.006372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE 17β-estradiol (E2) has been reported to reduce bleeding and brain injury in experimental intracerebral hemorrhage (ICH) model. However, it is not clear if E2 can prevent early hematoma expansion (HE) induced by hyperglycemia in acute ICH. The aim of this study is to evaluate the effects of E2 on HE and its potential mechanisms in hyperglycemic ICH mice. METHODS Two hundred, 8-week-old male CD1 mice were used. ICH was performed by collagenase injection. 50% dextrose (8 mL/kg) was injected intraperitoneally 3 hours after ICH to induce acute HE (normal saline was used as control). The time course of HE was measured 6, 24, and 72 hours after ICH. Two dosages (100 and 300 μg/kg) of E2 were administrated 1 hour after ICH intraperitoneally. Neurobehavioral deficits, hemorrhage volume, blood glucose level, and blood-brain barrier disruption were measured. To study the mechanisms of E2, estrogen receptor α (ERα) inhibitor methyl-piperidino-pyrazole, silent information regulator 1 (Sirt1) siRNA was administered, respectively. Protein expression of ERα, Sirt1, and acetylated nuclear factor-kappa B, and activity of matrix metalloproteinases-9 were detected. RESULTS Hyperglycemia enhanced HE and deteriorated neurological deficits after ICH from 6 hours after ICH. E2 treatment prevented blood-brain barrier disruption and improved neurological deficits 24 and 72 hours after ICH. E2 reduced HE by activating its receptor ERα, decreasing the expression of Sirt1, deacelylation of nuclear factor-kappa B, and inhibiting the activity of matrix metalloproteinases-9. ERα inhibitor methyl-piperidino-pyrazole and Sirt1 siRNA removed these effects of E2. CONCLUSIONS E2 treatment prevented hyperglycemia-enhanced HE and improved neurological deficits in ICH mice mediated by ERα/Sirt1/nuclear factor-kappa B pathway. E2 may serve as an alternative treatment to decrease early HE after ICH.
Collapse
Affiliation(s)
- Yun Zheng
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Qin Hu
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Anatol Manaenko
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Yang Zhang
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Yan Peng
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Liang Xu
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Junjia Tang
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - Jiping Tang
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng)
| | - John H Zhang
- From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng).
| |
Collapse
|
13
|
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia. Front Immunol 2014; 5:523. [PMID: 25374571 PMCID: PMC4205853 DOI: 10.3389/fimmu.2014.00523] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a normal and healthy response to neuronal damage. However, excessive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in progressive diseases such as Alzheimer’s, Parkinson’s, age-related macular degeneration, and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as neuroprotective agents. Erythropoietin (EPO) is a known neuroprotective agent that indirectly attenuates neuroinflammation, in part, by inhibiting neuronal apoptosis. In this review, we provide evidence that EPO also modulates neuroinflammation upstream of apoptosis by acting directly on glia. Further, the signaling induced by EPO may differ depending on cell type and context possibly as a result of activation of different receptors. While significant progress has been made in our understanding of EPO signaling, this review also identifies areas for future study in terms of the role of EPO in modulating neuroinflammation.
Collapse
Affiliation(s)
- Wesley S Bond
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| |
Collapse
|
14
|
Schober ME, Requena DF, Block B, Davis LJ, Rodesch C, Casper TC, Juul SE, Kesner RP, Lane RH. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury. J Neurotrauma 2014; 31:358-69. [PMID: 23972011 DOI: 10.1089/neu.2013.2922] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. HYPOTHESIS We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). METHODS EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. RESULTS EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.
Collapse
Affiliation(s)
- Michelle E Schober
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chu H, Ding H, Tang Y, Dong Q. Erythropoietin protects against hemorrhagic blood-brain barrier disruption through the effects of aquaporin-4. J Transl Med 2014; 94:1042-53. [PMID: 24978642 DOI: 10.1038/labinvest.2014.84] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
Erythropoietin (EPO) has protective effects against many neurological diseases, including intracerebral hemorrhage (ICH). Here, we aimed to test EPO's effects on blood-brain barrier (BBB) disruption morphologically and functionally following ICH, which has not been well investigated. We also examined whether the effects were dependent on aquaporin-4 (AQP4). We detected the expression of perihematomal AQP4 and EPO receptor (EPOR) induced by EPO injection at 1, 3 and 7 days after ICH. We also examined the effects of EPO on BBB disruption by ICH in wild-type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the related signal transduction pathways via astrocyte cultures. We found that EPO highly increased perihematomal AQP4 and EPOR expression. Specifically, EPO led to BBB protection in both types of mice by functionally reducing brain edema and BBB permeability, as well as morphologically suppressing tight junction (TJ) opening and endothelial cell swelling, and increasing expression of the TJ proteins occludin and zonula occluden-1 (ZO-1). Statistical analysis indicated that AQP4 was required for these effects. In addition, EPO upregulated phosphorylation of C-Jun amino-terminal kinase (JNK) and p38-mitogen-activated protein kinase (MAPK) as well as EPOR and AQP4 proteins in cultured astrocytes. The latter was inhibited by JNK and p38-MAPK inhibitors. Our data suggest that EPO protects BBB from disruption after ICH and that the main targets are the TJ proteins occludin and ZO-1. The effects of EPO are associated with increased levels of AQP4, and may occur through activation of JNK and p38-MAPK pathways after binding to EPOR.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Hongyan Ding
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Barichello T, Simões LR, Generoso JS, Sangiogo G, Danielski LG, Florentino D, Dominguini D, Comim CM, Petronilho F, Quevedo J. Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Transl Res 2014; 163:503-13. [PMID: 24440628 DOI: 10.1016/j.trsl.2013.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 01/29/2023]
Abstract
Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the central nervous system and have neuroprotective properties through the inhibition of apoptosis, as well as anti-inflammatory, antioxidant, angiogenic, and neurotrophic effects. In the current study, we demonstrated the effect of erythropoietin (EPO) on lipid peroxidation, protein carbonylation, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and behavioral parameters in rats with pneumococcal meningitis. EPO decreased lipid peroxidation and protein carbonylation, and it prevented protein degradation in the hippocampus and frontal cortex. MPO activity was decreased, and both SOD and CAT activity were increased in the first 6 hours after pneumococcal meningitis induction. Novel object recognition memory was impaired in the meningitis group; however, adjuvant treatment with EPO prevented memory impairment during both the short- and long-term retention tests. The meningitis group showed no difference in motor and exploratory activity between training and test sessions in the open-field task, which indicates that habituation memory was impaired; however, adjuvant treatment with EPO prevented habituation memory impairment. Although there are some limitations with respect to the animal model of pneumococcal meningitis, this study suggests that adjuvant treatment with EPO contributed to decreased oxidative stress and prevented cognitive impairment.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Lutiana R Simões
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Sangiogo
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Diogo Dominguini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Clarissa M Comim
- Laboratório de Neurociências Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Palhoça, SC, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
17
|
Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT. Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med (Maywood) 2014; 239:1461-75. [PMID: 24595981 DOI: 10.1177/1535370214523703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Brandon H Cherry
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Gary F Scott
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Myoung-Gwi Ryou
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Robert T Mallet
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| |
Collapse
|
18
|
Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, Wei L. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 2013; 244:16-30. [PMID: 23558089 DOI: 10.1016/j.neuroscience.2013.03.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Autophagy may contribute to ischemia-induced cell death in the brain, but the regulation of autophagic cell death is largely unknown. Nuclear factor kappa B (NF-κB) is a regulator of apoptosis in cerebral ischemia. We examined the hypothesis that autophagy-like cell death could contribute to ischemia-induced brain damage and the process was regulated by NF-κB. In adult wild-type (WT) and NF-κB p50 knockout (p50(-/-)) mice, focal ischemia in the barrel cortex was induced by ligation of distal branches of the middle cerebral artery. Twelve to 24h later, autophagic activity increased as indicated by enhanced expression of Beclin-1 and LC3 in the ischemic core and/or penumbra regions. This increased autophagy contributed to cell injury, evidenced by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) co-staining and a protective effect achieved by the autophagy inhibitor 3-methyladenine. The number of Beclin-1/TUNEL-positive cells was significantly more in p50(-/-) mice than in WT mice. Neuronal and vascular cell death, as determined by TUNEL-positive cells co-staining with NeuN or Collagen IV, was more abundant in p50(-/-) mice. Immunostaining of the endothelial cell tight junction marker occludin revealed more damage to the blood-brain barrier in p50(-/-) mice. Western blotting of the peri-infarct tissue showed a reduction of Akt-the mammalian target of rapamycin (mTOR) signaling in p50(-/-) mice after ischemia. These findings provide the first evidence that cerebral ischemia induced autophagy-like injury is regulated by the NF-κB pathway, which may suggest potential treatments for ischemic stroke.
Collapse
Affiliation(s)
- W-L Li
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Effects of Erythropoietin on Blood–Brain Barrier Tight Junctions in Ischemia–Reperfusion Rats. J Mol Neurosci 2012; 49:369-79. [DOI: 10.1007/s12031-012-9883-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
20
|
Abstract
BACKGROUND Use of antihypertensive medications is common after intracerebral hemorrhage (ICH). Medications that block adrenergic activation (e.g., beta-blockers and the alpha(2)-agonist, clonidine) may reduce the inflammatory response and therefore have secondary benefit after ICH. METHODS The patients with acute ICH enrolled in the placebo arm of the CHANT trial were included. Univariate and multivariate analyses were undertaken for factors associated with blood pressure medication use, edema at 72 h, and clinical outcome at 90 days. RESULTS Of the 303 patients, 87.8% received some antihypertensive treatment during the first 72 h of hospitalization. Edema volume on neuroimaging at 72 h was independently associated with clinical outcome. Use of anti-adrenergic medications was associated with less edema after controlling for hemorrhage volume and blood pressure. CONCLUSIONS Antihypertensive medications that antagonize the sympathetic nervous system may reduce perihematomal edema after ICH.
Collapse
|
21
|
Erythropoietin attenuates inflammatory factors and cell death in neonatal rats with intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:299-305. [PMID: 21725772 DOI: 10.1007/978-3-7091-0693-8_50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stroke affects infants at a rate of 26/100,000 live births each year. Of these strokes, approximately 6.7 are hemorrhagic strokes. Erythropoietin (EPO) is an anti-apoptotic and neuroprotective hormone. In adult rodents, EPO attenuates inflammatory factor expression and blood-brain barrier damage after intracerebral hemorrhage (ICH). However, the effect of EPO in neonatal ICH stroke remains unexplored. This investigation aimed to elucidate the underpinnings of inflammation after ICH in postnatal day 7 (P7) rats and the effect of human recombinant EPO (hrEPO) treatment on ICH-induced inflammation. The P7 rat pups were pretreated with hrEPO (5,000 U/kg i.p.) or saline vehicle 4 h prior to the induction of ICH by blood injection into the right cerebral cortex and basal ganglia. Supplemental half doses of hrEPO treatment or saline injections were subsequently given 16 h after ICH induction. Real-time PCR done 24 h after ICH showed reductions in interleukin1-β (IL1-β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) mRNA expression in the basal ganglia of the hrEPO-treated rats compared to saline-treated rats. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining indicated fewer dying cells in the hrEPO-treated brain. Our data suggest that hrEPO has an anti-inflammatory action in neonates after ICH. The suppression of inflammatory cascades likely contributes to hrEPO's neuroprotective effect, which may be explored as a therapeutic treatment for ICH.
Collapse
|
22
|
Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 2010; 24:573-94. [PMID: 21619868 DOI: 10.1016/j.bpa.2010.10.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/11/2010] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO), originally discovered as hematopoietic growth factor, has direct effects on cells of the nervous system that make it a highly attractive candidate drug for neuroprotection/neuroregeneration. Hardly any other compound has led to so much preclinical work in the field of translational neuroscience than EPO. Almost all of the >180 preclinical studies performed by many independent research groups from all over the world in the last 12 years have yielded positive results on EPO as a neuroprotective drug. The fact that EPO was approved for the treatment of anemia >20 years ago and found to be well tolerated and safe, facilitated the first steps of translation from preclinical findings to the clinic. On the other hand, the same fact, naturally associated with loss of patent protection, hindered to develop EPO as a highly promising therapeutic strategy for application in human brain disease. Therefore, only few clinical neuroprotection studies have been concluded, all with essentially positive and stimulating results, but no further development towards the clinic has occurred thus far. This article reviews the preclinical and clinical work on EPO for the indications neuroprotection/neuroregeneration and cognition, and hopefully will stimulate new endeavours promoting development of EPO for the treatment of human brain diseases.
Collapse
Affiliation(s)
- Derya Sargin
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
Velly L, Pellegrini L, Guillet B, Bruder N, Pisano P. Erythropoietin 2nd cerebral protection after acute injuries: a double-edged sword? Pharmacol Ther 2010; 128:445-59. [PMID: 20732352 DOI: 10.1016/j.pharmthera.2010.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/02/2010] [Indexed: 12/20/2022]
Abstract
Over the past 15 years, a large body of evidence has revealed that the cytokine erythropoietin exhibits non-erythropoietic functions, especially tissue-protective effects. The discovery of EPO and its receptors in the central nervous system and the evidence that EPO is made locally in response to injury as a protective factor in the brain have raised the possibility that recombinant human EPO (rhEPO) could be administered as a cytoprotective agent after acute brain injuries. This review highlights the potential applications of rhEPO as a neuroprotectant in experimental and clinical settings such as ischemia, traumatic brain injury, and subarachnoid and intracerebral hemorrhage. In preclinical studies, EPO prevented apoptosis, inflammation, and oxidative stress induced by injury and exhibited strong neuroprotective and neurorestorative properties. EPO stimulates vascular repair by facilitating endothelial progenitor cell migration into the brain and neovascularisation, and it promotes neurogenesis. In humans, small clinical trials have shown promising results but large prospective randomized studies failed to demonstrate a benefit of EPO for brain protection and showed unwanted side effects, especially thrombotic complications. Recently, regions have been identified within the EPO molecule that mediate tissue protection, allowing the development of non-erythropoietic EPO variants for neuroprotection conceptually devoid of side effects. The efficacy and the safety profile of these new compounds are still to be demonstrated to obtain, in patients, the benefits observed in experimental studies.
Collapse
Affiliation(s)
- L Velly
- Laboratoire de Pharmacologie, INSERM UMR 608, Université de la Méditerranée, Faculté de Pharmacie, Marseille, France
| | | | | | | | | |
Collapse
|