1
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Mortality prediction by serum melatonin levels of patients with spontaneous intracerebral hemorrhage. Neurol Sci 2021; 43:1859-1864. [PMID: 34350514 DOI: 10.1007/s10072-021-05386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/05/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In one study, higher serum melatonin levels have been reported at diagnosis of spontaneous intracerebral hemorrhage (ICH) in non-surviving than in surviving patients. Now, we carried out this study with the aims to explore whether blood melatonin concentrations in the first 7 days of ICH are different in survivor and non-survivor patients and whether are useful in the prediction of mortality. METHODS Six Spanish hospitals participated in this observational study of patients with severe supratentorial ICH (defining severe as Glasgow Coma Scale < 9). We determined serum melatonin levels during the first, fourth, and eighth day of severe ICH. RESULTS Surviving (n = 64) compared to non-surviving (n = 53) patients showed lower serum melatonin levels during the first (p < 0.001), fourth (p < 0.001), and eighth day (p < 0.001) of severe ICH. We found in multiple logistic regression analysis an association between serum melatonin levels and 30-day mortality (odds ratio = 8.932; 95% CI = 2.442-32.665; p = 0.001) controlling for midline shift, ICH score, early evacuation of ICH, and glycemia. We found an AUC (95% CI) for the mortality prediction of 0.90 (0.83-0.95; p < 0.001), 0.94 (0.87-0.98; p < 0.001), and 0.90 (0.81-0.96; p < 0.001) by serum melatonin concentrations during the first, fourth, and eighth day. CONCLUSIONS In our current study, it appears that novel findings of serum melatonin levels recollected at any moment during the first 7 days of a severe ICH were higher in non-survivor than in survivor patients and could help in mortality prediction.
Collapse
|
4
|
Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 35:862-886. [PMID: 34341912 DOI: 10.1007/s12028-021-01311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood-brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.
Collapse
|
5
|
Zeng L, Zhu Y, Hu X, Qin H, Tang J, Hu Z, Chen C. Efficacy of melatonin in animal models of intracerebral hemorrhage: a systematic review and meta-analysis. Aging (Albany NY) 2021; 13:3010-3030. [PMID: 33503014 PMCID: PMC7880339 DOI: 10.18632/aging.202457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
Melatonin is a potent antioxidant and anti-inflammatory agent that is showing promising results in acute brain injury. The aim of this study was to systematically evaluate the pre-clinical evidence on the effectiveness of melatonin in improving outcome after intracerebral hemorrhage (ICH). We searched mainstream databases from the inception to the end of June 2020. Outcomes were measured by neurobehavioral scores or brain water content. Meta-analyses were performed with Stata 12.0 and Review Manager 5.3. Finally, 8 articles published from 2008 to 2019 met the inclusion criteria. Meta-analysis of pre-clinical data revealed an overall positive effect on neurobehavioral outcome with a standardized mean difference (SMD) of -0.81 (95% CI: -1.47, -0.15; p = 0.016) with significant heterogeneity (Q = 41.49, I2 = 68.7%; p = 0.000). Further subgroup analysis were performed from methodological differences, especially dose and timing of treatments. Furthermore, melatonin reduced cerebral edema by an SMD of -0.78 (95% CI: -1.23, -0.34; p = 0.001) with low heterogeneity. In conclusion, melatonin treatment significantly improves both behavioral and pathological outcomes in animal models of ICH. In addition, the results should be interpreted in light of the limitations in experimental design and methodological quality of the studies included in the meta-analysis.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuwei Zhu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiangyu Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Haiyun Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiayu Tang
- Department of Neurology, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
6
|
Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, Sabatel R, Ramos-Gómez L, Argueso M, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. High serum levels of TAC and early mortality in patients with spontaneous intracerebral haemorrhage. Neurol Sci 2020; 42:1491-1497. [PMID: 32870458 DOI: 10.1007/s10072-020-04692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Oxidation contributes to secondary brain injury after spontaneous intracerebral haemorrhage (SIH). One study found lower levels of total antioxidant capacity (TAC) in the blood in patients with SIH than in healthy subjects. However, there are no data on blood TAC levels and survival in patients with SIH. Therefore, the objective of our study was to determine if an association exists between serum TAC levels and mortality in patients with SIH. METHODS We included patients with severe supratentorial SIH. We considered severe when Glasgow Coma Scale (GCS) < 9. Patients from 6 Spanish hospitals were included in this observational and prospective study. Serum TAC levels at days 1, 4 and 8 of SIH were determined. Thirty-day mortality was our end-point study. RESULTS Non-surviving patients compared with surviving patients showed higher serum TAC levels at day 1 (p < 0.001), 4 (p < 0.001) and 8 (p = 0.001). An area under the curve was found for the prediction of 30-day mortality by serum TAC levels of 0.92 (95% CI = 0.85-96%; p < 0.001). Multiple logistic regression analysis showed an association of serum TAC levels with 30-day mortality (odds ratio = 16.513; 95% CI = 2.548-107.015; p = 0.003) controlling for midline shift, glycemia, early evacuation of SIH, intracerebral haemorrhage (ICH) score, age and volume of SIH. CONCLUSIONS The new findings of this study are that serum TAC levels are higher in non-surviving than in surviving patients, and that they are associated with mortality and could be used to predict mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n., 38010, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Ofra, s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain
| | - Luis Ramos-Gómez
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, 38713, Breña Alta, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez no. 17-19, 46004, Valencia, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Barranco de la Ballena s/n., 35010, Las Palmas de Gran Canaria, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n., 35016, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n., 38320, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
Soltani F, Salari A, Javaherforooshzadeh F, Nassajjian N, Kalantari F. The effect of melatonin on reduction in the need for sedative agents and duration of mechanical ventilation in traumatic intracranial hemorrhage patients: a randomized controlled trial. Eur J Trauma Emerg Surg 2020; 48:545-551. [PMID: 32699918 PMCID: PMC7375205 DOI: 10.1007/s00068-020-01449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022]
Abstract
Purpose This study aimed to determine the effect of exogenous melatonin on the number of sedative drugs and the duration of mechanical ventilation in traumatic intracranial hemorrhage patients in ICU. Methods This double-blind randomized clinical trial study was conducted in the ICU wards of Golestan Hospital, Ahvaz, Iran, from September 2017 to March 2018. In this study, 52 patients with intracerebral hemorrhage were selected by convenient sampling (26 patients in each group) and were randomly assigned to two groups of melatonin and control. Sedation and pain management package was applied to both groups. Outcomes: Amount of the sedative and opioid drug; mechanical ventilation time; ICU staying time; Glasgow Coma Score; hemodynamic parameters. Results There was no significant difference between them in terms of demographic characteristics. Cumulative doses of morphine and mechanical ventilation time were significant in two groups. (P < 0.05) The mean length of ICU staying was not significant. Glasgow Coma Score on the 6th day was significant in two groups (P < 0.05). Diastolic blood pressure was significant between groups (P < 0.001). Conclusion This study presented that morphine consumption and mechanical ventilation time were significantly lower in the melatonin group than in the control. Also, rise in GCS in the melatonin group was faster in the melatonin group than in the control. The use of melatonin can be recommended for patients with ICH in the ICU for better outcomes.
Collapse
Affiliation(s)
- Farhad Soltani
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Salari
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Javaherforooshzadeh
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nozar Nassajjian
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farahmand Kalantari
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
The Serum Melatonin Levels and Mortality of Patients with Spontaneous Intracerebral Hemorrhage. Brain Sci 2019; 9:brainsci9100263. [PMID: 31581589 PMCID: PMC6826740 DOI: 10.3390/brainsci9100263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: Providing melatonin in animal models with spontaneous intracerebral hemorrhage (SIH) has been associated with beneficial effects. However, to our knowledge, there are no published data on circulating melatonin levels regarding the prognosis of SIH patients. Therefore, the objectives of this study were to determine whether serum melatonin levels in SIH patients were associated with early mortality and whether they could be used as prognostic biomarkers. Methods: This observational and prospective study included patients with supratentorial and clinically severe SIH (defined as Glasgow Coma Scale GCS <9) admitted to the Intensive Care Units of six Spanish hospitals. Serum melatonin levels were determined at the time of severe SIH diagnosis. Mortality at 30 days was the study end-point. Results: Non-surviving patients (n = 46) showed higher serum melatonin levels (p < 0.001) than surviving (n = 54) patients. An area under the curve was found for the prediction of 30-day mortality by serum melatonin levels of 0.89 (95% CI = 0.81-0.94; p < 0.001). Multiple logistic regression analysis showed an association of serum melatonin levels with 30-day mortality (Odds Ratio = 8.16; 95% CI = 2.30-28.95; p = 0.001) after controlling for midline shift, glycemia, early evacuation of SIH, and Intracerebral hemorrhage(ICH) score. Conclusions: The novel findings by our study were the presence of higher serum melatonin levels in non-surviving patients than in surviving patients and the association of these levels with mortality.
Collapse
|
9
|
Ovid D, Hayes TB, Bentley GE. Melatonin Administration Methods for Research in Mammals and Birds. J Biol Rhythms 2018; 33:567-588. [PMID: 30246597 DOI: 10.1177/0748730418795802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocrine research in animals often entails exogenous hormone administration. Special issues arise when developing administration protocols for hormones with circadian and seasonal periodicity. This article reviews various methods for the exogenous administration of hormones with such periodicities by focusing on melatonin. We discuss that methodological variations across studies can affect experimental results. Melatonin administration techniques used in vertebrates includes infusion pumps, beeswax pellets, oral administration, injections, SILASTIC capsules, osmotic pumps, transdermal delivery, beads, and sponges.
Collapse
Affiliation(s)
- Dax Ovid
- University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
10
|
Green Tea and Red Tea from Camellia sinensis Partially Prevented the Motor Deficits and Striatal Oxidative Damage Induced by Hemorrhagic Stroke in Rats. Neural Plast 2018; 2018:5158724. [PMID: 30174686 PMCID: PMC6098885 DOI: 10.1155/2018/5158724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/17/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Green tea from Camellia sinensis plays a well-established neuroprotective role in several neurodegenerative diseases, including intracerebral hemorrhage (ICH). However, the other teas of the same plant do not have their properties well understood; but they can be as effective as green tea as an alternative therapy. In this study, we investigated the effects of supplementation with green tea and red tea from Camellia sinensis on motor deficits and striatum oxidative damage in rats submitted to hemorrhagic stroke (ICH). Male Wistar rats were supplemented with green tea, red tea, or vehicle for 10 days prior to ICH induction. After injury, the rats were submitted to motor tests (open field for locomotion, rotarod for balance, and neurological deficit scale (NDS)) 1, 3, and 7 days after ICH induction, while the tea supplementation was maintained. Subsequently, the rats were euthanized to striatal tissue dissection for biochemical analyzes (lipid peroxidation, reactive oxygen species, glutathione levels, and total antioxidant capacity). ICH caused locomotor and balance deficits, as well as increased the neurological deficit (NDS). Only red tea prevented locomotor deficits after injury. Green tea and red tea prevented balance deficits on the seventh day after ICH. On NDS evaluation, green tea presented a better neuroprotection than red tea (until day 3 after ICH injury). In addition, ICH increased reactive oxygen species and lipid peroxidation levels, without altering antioxidant markers. Green and red teas were effective in decreasing the lipid peroxidation levels. Therefore, green and red teas partially prevented the motor deficits and striatal oxidative damage induced by ICH. Based on our results, we can consider that the two teas seem to be equally effective to prevent motor deficits and striatal oxidative damage induced by hemorrhagic stroke in rats.
Collapse
|
11
|
Cai JC, Liu W, Lu F, Kong WB, Zhou XX, Miao P, Lei CX, Wang Y. Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage. Exp Ther Med 2018; 15:4131-4138. [PMID: 29725362 PMCID: PMC5920231 DOI: 10.3892/etm.2018.5938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/06/2017] [Indexed: 11/05/2022] Open
Abstract
Resveratrol (RESV) improves histopathological and behavioral outcomes in diseases of the central nervous system. However, to the best of our knowledge, there have been no studies investigating its neuroprotective effects on secondary brain injury following intracerebral hemorrhage (ICH). The aim of the present study was to evaluate the neuroprotective function of resveratrol following ICH. Male Sprague-Dawley rats were randomly divided into 3 groups: Sham, ICH and ICH+RESV groups. Rats underwent ICH and received an intraperitoneal injection of RESV daily. Rotarod and open field tests were performed to evaluate improvements in motor disturbance pre- and post-surgery. Rats were sacrificed following the final behavioral test; subsequently, neuron injury and cell death in the hippocampus and microglia activation in the cortex were determined using Nissl staining and ionized calcium binding adaptor molecule 1 immunofluorescence staining, respectively. Compared with the ICH group, rats treated with resveratrol for 2 weeks performed significantly better in behavioral tests. Furthermore, less neural damage in the hippocampus and decreased activation of microglia was observed in the ICH+RESV group. The results of the present study therefore indicate that resveratrol may alleviate secondary brain injury following ICH.
Collapse
Affiliation(s)
- Jia-Chen Cai
- Department of Neurosurgery, The No. 2 People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Wei Liu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, School of Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fei Lu
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Wen-Bing Kong
- Department of Neurosurgery, East District of Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xin-Xuan Zhou
- Department of Neurosurgery, East District of Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peng Miao
- Department of Neurosurgery, East District of Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Cheng-Xiang Lei
- Department of Biomedical Sciences, Institute of Molecular Medicine, HuaQiao University, Quanzhou, Fujian 362021, P.R. China
| | - Yan Wang
- Department of Cardiology, East District of Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
12
|
Lorente L, Martín MM, Abreu-González P, Sabatel R, Ramos L, Argueso M, Solé-Violán J, Riaño-Ruiz M, Jiménez A, García-Marín V. Serum Malondialdehyde Levels and Mortality in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurg 2018; 113:e542-e547. [PMID: 29477698 DOI: 10.1016/j.wneu.2018.02.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Oxidative stress has been associated with secondary brain injury after spontaneous intracerebral hemorrhage (SIH). Malondialdehyde (MDA) appears in blood during lipid oxidation. Higher serum MDA levels have been found in patients with SIH than in healthy controls; however, we have not found data indicating an association between elevated serum MDA and early mortality in this population. This was the main objective of our study. METHODS MDA levels were measured in serum samples obtained from 100 patients at diagnosis of severe SIH (Glasgow Coma Scale score ≤8) and 80 healthy controls. The endpoint of the study was mortality at 30 days. RESULTS Serum MDA levels were significantly higher in patients with severe SIH than in healthy controls (1.46 [1.18-2.2] vs. 1.11 [0.72-1.51]; P < 0.001), and in nonsurviving (n = 46) than in surviving (n = 54) patients (1.68 [1.23-4.02] vs. 1.37 [0.99-1.92]; P = 0.002). The area under the receiving operating characteristic curve of serum MDA levels to predict 30-day mortality was 0.68 (95% CI, 0.58-0.77; P < 0.001). Serum MDA levels were associated with 30-day mortality (OR, 6.279; 95% CI, 1.940-20.319; P = 0.002). CONCLUSIONS The most important new finding of our study is that there is an association between serum MDA levels at diagnosis of severe SIH and early mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Marta Riaño-Ruiz
- Servicio de Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
13
|
Wu HJ, Wu C, Niu HJ, Wang K, Mo LJ, Shao AW, Dixon BJ, Zhang JM, Yang SX, Wang YR. Neuroprotective Mechanisms of Melatonin in Hemorrhagic Stroke. Cell Mol Neurobiol 2017; 37:1173-1185. [PMID: 28132129 PMCID: PMC11482116 DOI: 10.1007/s10571-017-0461-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
Hemorrhagic stroke which consists of subarachnoid hemorrhage and intracerebral hemorrhage is a dominant cause of death and disability worldwide. Although great efforts have been made, the physiological mechanisms of these diseases are not fully understood and effective pharmacological interventions are still lacking. Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone produced by the pineal gland, is a broad-spectrum antioxidant and potent free radical scavenger. More importantly, there is extensive evidence demonstrating that melatonin confers neuroprotective effects in experimental models of hemorrhagic stroke. Multiple molecular mechanisms such as antioxidant, anti-apoptosis, and anti-inflammation, contribute to melatonin-mediated neuroprotection against brain injury after hemorrhagic stroke. This review article aims to summarize current knowledge regarding the beneficial effects of melatonin in experimental models of hemorrhagic stroke and explores the underlying mechanisms. We propose that melatonin is a promising neuroprotective candidate that is worthy of further evaluation for its potential therapeutic applications in hemorrhagic stroke.
Collapse
Affiliation(s)
- Hai-Jian Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Cheng Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Huan-Jiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Kun Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Lian-Jie Mo
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - An-Wen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Yi-Rong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
14
|
Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G. Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury. Transl Stroke Res 2017; 9:74-91. [PMID: 28766251 PMCID: PMC5750335 DOI: 10.1007/s12975-017-0559-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity, and the effective treatment is still lacking. We designed this study to investigate the therapeutic effects and mechanisms of melatonin on the secondary brain injury (SBI) after ICH. An in vivo ICH model was induced via autologous whole blood injection into the right basal ganglia in Sprague-Dawley (SD) rats. Primary rat cortical neurons were treated with oxygen hemoglobin (OxyHb) as an in vitro ICH model. The results of the in vivo study showed that melatonin alleviated severe brain edema and behavior disorders induced by ICH. Indicators of blood-brain barrier (BBB) integrity, DNA damage, inflammation, oxidative stress, apoptosis, and mitochondria damage showed a significant increase after ICH, while melatonin reduced their levels. Meanwhile, melatonin promoted further increasing of expression levels of antioxidant indicators induced by ICH. Microscopically, TUNEL and Nissl staining showed that melatonin reduced the numbers of ICH-induced apoptotic cells. Inflammation and DNA damage indicators exhibited an identical pattern compared to those above. Additionally, the in vitro study demonstrated that melatonin reduced the apoptotic neurons induced by OxyHb and protected the mitochondrial membrane potential. Collectively, our investigation showed that melatonin ameliorated ICH-induced SBI by impacting apoptosis, inflammation, oxidative stress, DNA damage, brain edema, and BBB damage and reducing mitochondrial membrane permeability transition pore opening, and melatonin may be a potential therapeutic agent of ICH.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Feng Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Yang Dou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiaodi Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Chenglin Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
15
|
Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135429. [PMID: 28698874 PMCID: PMC5494071 DOI: 10.1155/2017/5135429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) which refers to bleeding in the brain is a very deleterious condition with high mortality and disability rate. Surgery or conservative therapy remains the treatment option. Various studies have divided the disease process of ICH into primary and secondary injury, for which knowledge into these processes has yielded many preclinical and clinical treatment options. The aim of this review is to highlight some of the new experimental drugs as well as other treatment options like stem cell therapy, rehabilitation, and nanomedicine and mention some translational clinical applications that have been done with these treatment options.
Collapse
|
16
|
Zhang X, Liu W, Yuan J, Zhu H, Yang Y, Wen Z, Chen Y, Li L, Lin J, Feng H. T lymphocytes infiltration promotes blood-brain barrier injury after experimental intracerebral hemorrhage. Brain Res 2017. [PMID: 28633994 DOI: 10.1016/j.brainres.2017.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T lymphocytes migrate into the brain after intracerebral hemorrhage (ICH) and promote cerebral inflammation, thus exacerbating neuronal injury. However, the relationship between of T lymphocytes infiltration and blood-brain barrier (BBB) injury after ICH has not been clarified. In this study, we investigated the spatial-temporal distribution of infiltrating T lymphocytes after ICH in C57BL/6 mice by immunofluorescence and flow cytometry, and the accompanying change rules of BBB permeability were detected by Evans blue dye leakage and tight junction protein expression. Furthermore, T lymphocyte-deficient nude mice and T lymphocyte-decreased C57BL/6 mice treated with fingolimod were used to verify the relationship between T lymphocytes infiltration and BBB leakage after ICH. Here, we reported that brain-infiltrating T lymphocytes in the hemorrhagic hemisphere began to accumulate on the first day and peaked on the fifth day after ICH; BBB leakage also at peaked on the fifth day. Moreover, T lymphocyte-deficient nude mice showed minor BBB leakage after ICH compared with C57BL/6 control mice. Similarly, fingolimod treatment can significantly decrease T lymphocyte infiltration and promote BBB integrity compared with a vehicle control. Overall, our results suggested that suppression of T lymphocyte infiltration may be a novel way to improve BBB integrity after ICH.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zexian Wen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
17
|
Mechanisms of Cerebral Hemorrhage. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Ueda Y, Masuda T, Ishida A, Misumi S, Shimizu Y, Jung CG, Hida H. Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats. J Neurosci Res 2014; 92:1499-508. [DOI: 10.1002/jnr.23434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/28/2014] [Accepted: 05/20/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Yoshitomo Ueda
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Tadashi Masuda
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Sachiyo Misumi
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Yuko Shimizu
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science; Nagoya City University Graduate School of Medical Science; Nagoya Japan
| |
Collapse
|
19
|
Frantzias J, Sena ES, Macleod MR, Al-Shahi Salman R. Treatment of intracerebral hemorrhage in animal models: meta-analysis. Ann Neurol 2011; 69:389-99. [PMID: 21387381 DOI: 10.1002/ana.22243] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interventions that improve functional outcome after acute intracerebral hemorrhage (ICH) in animals might benefit humans. Therefore, we systematically reviewed the literature to find studies of nonsurgical treatments tested in animal models of ICH. METHODS In July 2009 we searched Ovid Medline (from 1950), Embase (from 1980), and ISI Web of Knowledge (from 1969) for controlled animal studies of nonsurgical interventions given after the induction of ICH that reported neurobehavioral outcome. We assessed study quality and performed meta-analysis using a weighted mean difference random effects model. RESULTS Of 13,343 publications, 88 controlled studies described the effects of 64 different medical interventions (given a median of 2 hours after ICH induction) on 38 different neurobehavioral scales in 2,616 treated or control animals (median 14 rodents per study). Twenty-seven (31%) studies randomized treatment allocation, and 7 (8%) reported allocation concealment; these studies had significantly smaller effect sizes than those without these attributes (p < 0.001). Of 64 interventions stem cells, calcium channel blockers, anti-inflammatory drugs, iron chelators, and estrogens improved both structural outcomes and neurobehavioral scores in >1 study. Meta-regression revealed that together, structural outcome and the intervention used accounted for 65% of the observed heterogeneity in neurobehavioral score (p < 0.001, adjusted r(2) = 0.65). INTERPRETATION Further animal studies of the interventions that we found to improve both functional and structural outcomes in animals, using better experimental designs, could target efforts to translate effective treatments for ICH in animals into randomized controlled trials in humans.
Collapse
Affiliation(s)
- Joseph Frantzias
- Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
20
|
Manaenko A, Lekic T, Ma Q, Ostrowski RP, Zhang JH, Tang J. Hydrogen inhalation is neuroprotective and improves functional outcomes in mice after intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:179-83. [PMID: 21725752 DOI: 10.1007/978-3-7091-0693-8_30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Oxidative stress contributes significantly to the development of secondary brain injury after intracerebral hemorrhage (ICH). It has been previously demonstrated that hydrogen gas can decrease oxidative stress by scavenging reactive oxygen species. We hypothesized that hydrogen therapy will reduce brain oxidative stress in mice after ICH and thereby will lead to reduced brain edema and improved neurological outcomes. MATERIALS AND METHODS CD1 male mice (weight 30-35 g) were divided into the following groups: sham, ICH+vehicle (room air), ICH+1-h hydrogen treatment, and ICH+2-h hydrogen treatment. ICH was induced by injection of bacterial collagenase into the right basal ganglia. The evaluation of outcomes was done at two time points: 24 and 72 h post-ICH. Brain water content was measured for assessment of brain edema (wet/dry weight method), and three neurological tests were performed pre- and postoperatively. RESULTS Collagenase injection was found to induce brain edema and impair functional performance of rats. The hydrogen inhalation reduced these effects acutely (24 h); however it exhibited only a tendency to improvement in the delayed study (72 h). CONCLUSIONS Our results suggest that hydrogen inhalation exerts an acute brain-protective effect in the mouse ICH model. However, the acute hydrogen therapy alone is not sufficient to improve delayed ICH outcomes in this model.
Collapse
Affiliation(s)
- Anatol Manaenko
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
21
|
Masuda T, Maki M, Hara K, Yasuhara T, Matsukawa N, Yu S, Bae EC, Tajiri N, Chheda SH, Solomita MA, Weinbren N, Kaneko Y, Kirov SA, Hess DC, Hida H, Borlongan CV. Peri-hemorrhagic degeneration accompanies stereotaxic collagenase-mediated cortical hemorrhage in mouse. Brain Res 2010; 1355:228-39. [DOI: 10.1016/j.brainres.2010.07.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/01/2022]
|
22
|
Li ZQ, Liang GB, Xue YX, Liu YH. Effects of combination treatment of dexamethasone and melatonin on brain injury in intracerebral hemorrhage model in rats. Brain Res 2009; 1264:98-103. [PMID: 19368815 DOI: 10.1016/j.brainres.2009.01.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 01/30/2023]
Abstract
The study was performed to investigate the effect of combination therapy with melatonin and dexamethasone (DEX) on brain injury in intracerebral hemorrhage (ICH) model in rats. Compared to the control group, combination therapy group with melatonin (10 mg/kg) and DEX (0.025 mg/kg) significantly reduced the degree of (1) brain edema, (2) the permeability of blood brain barrier (measured by Evans blue), (3) Oxidative stress (evaluated by malondialdehyde assay), (4) cytokines expression (tumor necrosis factor-alpha and interleukin-1beta), and (5) apoptosis (measured by Bax and Bcl-2 expression). In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated neurologic scores. Taken together, our results clearly indicated for the first time that strategies targeting multiple proinflammatory pathways may be more effective than a single effector molecule for the treatment of ICH.
Collapse
Affiliation(s)
- Zhi-qing Li
- Department of Neurosurgery, Shenyang Northern Hospital, Shenyang, China
| | | | | | | |
Collapse
|